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1 Abstraction Layers

Author Florian Schoppmann

History v0.6 Replaced UML figure [Rahul Iyer]
v0.5 Initial revision of design document
v0.4 Support for function pointers and sparse-vectors
v0.3 C++ abstraction layer rewritten as a template library, switched to

Eigen [36] as linear-algebra library
v0.2 Initial revision of C++ abstraction layer, incorporated Armadillo [63]

as linear-algebra library

1.1 The C++ Abstraction Layer
There are a number of complexities involved in writing C or C++-based user-defined functions
over a legacy DBMS like PostgreSQL, all of which can get in the way of maintainable, portable
application logic. This complexity can be especially frustrating for routines whose pseudocode
amounts to a short linear-algebra expression that should result in a compact implementation.
MADlib provides a C++ abstraction layer both to ease the burden of writing high-performance

UDFs, and to encapsulate DBMS-specific logic inside the abstraction layer, rather than spreading
the cost of maintenance and porting across all the UDFs in the library. In brief, the MADlib C++
abstraction currently provides five classes of functionality: type bridging, math-library integration,
resource-management shims, high-level types, and templates for modular fold/reduce components.

1.1.1 Overview of Functionality

Type Bridging The basic responsibility for the C++ abstraction layer is to bridge database
types to native C++ types. For a DBMS, a user-defined function implemented in a compiled
language is typically nothing more but a symbol (i.e., an address) in a shared library. As such,
DBMS APIs specify that UDFs must have a fixed signature, and arguments are passed as an array
of pointers along with additional meta data. Hand-written C code would therefore often consist of
long boilerplate code that is very specific to the underlying DBMS: Making sure that the passed
data is of the correct type, copying immutable data before doing modifications, verifying array
lengths, etc. The C++ abstraction layer encapsulates all this within the recursive AnyType class
that can contain either a primitive type (like, e.g., int or double) or multiple other values of type
AnyType (for representing a composite type). This encapsulation works both for passing data from
the DBMS to the C++ function, as well as returning values back from C++. To give an example: A
simple, portable, and completely type-safe (though arguably not very useful) function that adds two
numbers could be implemented with essentially as little code as in a high-level scripting language:

1: AnyType
2: sum_two_doubles::run(AnyType& args) {
3: return args[0].getAs<double>()
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4: + args[1].getAs<double>();
5: }

Math-Library Integration and Performance SQL comes without any native support for
vector and matrix operations. This presents challenges at two scales. At a macroscopic level,
matrices must be intelligently partitioned into chunks that can fit in memory on a single node. At
a microscopic scale, the database engine must invoke efficient linear-algebra routines on the pieces
of data it gets in core. To this end, the C++ abstraction layer incorporates the very performant
linear-algebra library Eigen [36]. Most importantly, it provides additional type bridges that do
not involve memory copying and thus are very efficient: For instance, double-precision arrays in
the DBMS are the canonic way to represent real-valued vectors. Therefore, the C++ abstraction
layer not just provides an array-to-array bridge but also maps DBMS arrays to Eigen vectors. The
bridged types can be used with all of the very sophisticated vector and matrix operations provided
by Eigen.
Incorporating proven third-party libraries moreover makes it easy for MADlib developers to write

correct and performant code: For instance, the Eigen linear-algebra library contains well-tested and
well-tuned code that makes use of the SIMD instruction sets (like SSE) found in today’s CPUs.
Recent versions of Eigen even allow coupling with proprietary high-performance mathematical
routines like the Intel Math Kernel Library.
Likewise, the C++ abstraction layer itself has been tuned for efficient value marshaling. Some

examples include: All type bridges are aware of mutable and immutable objects and avoid making
copies whenever possible. DBMS-catalogue lookups occur only once per query and are then mini-
mized by caching. Moreover, the C++ abstraction layer is written as a template library and with
the goal of reducing the runtime and abstraction overhead to a minimum. In particular, it takes
extra steps to avoid memory allocation whenever possible.

Resource-Management Shims Another aspect of the C++ abstraction layer is to provide a
safe and robust runtime environment with a standard interface. For instance, PostgreSQL maintains
a hierarchy of memory contexts: When a query is started, a new memory context is created and
all transient memory allocations are supposed to occur within this context. When the query ends,
disposing of the query context provides a simple and effective way of garbage collection. The C++
abstraction layer makes sure that such modi operandi are followed. On the other hand, the C++
abstraction layer also facilitates writing C++ code with a well-defined interface. This is particularly
necessary if (as is typically the case) a DBMS only provides a C plugin interface: In that case it is
important that exceptions, signals, etc. do not cross runtime boundaries.

High-level types A second responsibility of the abstraction layer is to help compensating for
SQL’s lack of higher-order logic: For instance, an AnyType object can contain a FunctionHandle,
which points to a user-defined function. With the syntactic sugar possible in C++, this essentially
makes in-database functions first-class objects like they commonly are in modern programming
languages. Internally, the abstraction layer maps UDFs to their object ID in the database, and it
takes care of looking up the function in the database catalog, verifying argument lists, ensuring
type-safety, etc.
Likewise, there is the need to pass internal data structures from one UDF to another (i.e., possibly

through the DBMS) in a performant and portable way. While DBMSs like PostgreSQL support
user-defined composite types, converting into them (or even using them in internal C++ code)
is slow, creates dependencies on MADlib-specific type-bridging classes, and hinders code reuse
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in/from other projects than MADlib. The C++ abstraction layer therefore contains the recursive
DynamicStruct class that provides a C++ struct/class interface around a stream of bytes. This
class is very generic and can easily be used with any contiguous blocks of memory. Compared to
the alternative of using existing serialization and deserialization classes, we expect DynamicStruct
to be far better performing, as it modifies constant-length elements directly in the byte stream.

Modular Fold/Reduce Components The most basic building block in the macro-programming
of MADlib is the use of user-defined aggregates (UDAs). In general, aggregates—and the related
window functions—are the natural way in SQL to implement mathematical functions that take
as input the values of an arbitrary number of rows. Unfortunately, concrete extension interfaces
for user-defined aggregates vary widely across vendors and open-source systems. Nonetheless, the
aggregation paradigm (or in functional programming terms, “fold and reduce”) is natural and
ubiquitous, and in most widely-used DBMSs (e.g., in PostgreSQL, MySQL, Greenplum, Oracle,
SQL Server, Teradata) a user-defined aggregate consists of a well-known pattern of two or three
user-defined functions:

i) A transition function that takes the current transition state and a new data point. It combines
both into into a new transition state. The transition function is equivalent to the “combining”
function passed to linear left-fold functions in functional-programming languages.

ii) An optional merge function that takes two transition states and computes a new com-
bined transition state. This function is only needed for parallel execution. In functional-
programming terms, a merge operation is a tree-like fold.

iii) A final function that takes a transition state and transforms it into the output value.

Clearly, a user-defined aggregate is inherently data-parallel if the transition function is associative
and the merge function returns the same result as if the transition function was called repeatedly
for every individual element in the second state.

Since the fold/reduce computational model is so ubiquitous and we anticipate the need to share
code with other projects, fold/reduce code should not be interwoven with the DBMS interface.
That is, fold/reduce-components should be implemented as independent C++ classes (possibly
as generic template classes), without dependencies on MADlib-specific type-bridging classes like
AnyType. However, fold/reduce components need to store their state as objects that the back-
end can understand—for maximum portability, all state information must even reside in a sin-
gle contiguous block of memory. The C++ abstraction layer therefore provides a recursive class
DynamicStruct that can contain objects both of primitive data types as well as objects of variable
length, including other objects of DynamicStruct. This solution is more performant than serializa-
tion and deserialization, because it allows fixed-length datums to be modified directly in the block
of memory.

1.1.2 Type Bridging

1.1.2.1 Class AnyType

AnyType is a container type for all values that are passed between the DBMS and C++ code. This
also includes values passed to or returned from UDFs invoked as FunctionHandle. An AnyType
object represents one of three kinds of values:

i) NULL
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ii) A simple value. E.g., this may be a value of a primitive data type like int or double, or a
value of some abstraction-layer type like FunctionHandle.

iii) A composite value (i.e., a tuple). In this case, the AnyType object contains a list of other
AnyType objects. Tuple elements are not named but instead accessed by index.

AnyType objects should be explicitly instantiated only for returning values to the backend or for
invoking a FunctionHandle. Implementations may choose to have different internal representations
for values received from the backend and values from UDF code. The two constructors below only
pertain to instantiations within UDF code. Constructors used by internal abstraction-layer code
are implementation-specific.

Member functions

• AnyType()

Default constructor. Initializes this object as NULL. This constructor must also be used for
initializing a composite object. After construction, operator<<() can be used to append
values to the composite object.

• template <class T> AnyType(const T& inValue)

Template constructor (will not be used as copy constructor). This constructor will be invoked
when initializing this object with an arbitrary value (excluding composite types).

• template <class T> T getAs()

Convert this object to the type specified as template argument.

• AnyType operator[](uint16_t inID) const

If this object is a composite value, return the element with index inID. To the user, AnyType
is a fully recursive type: An AnyType object may contain a composite value, in which case it
is composed of a number of other AnyType objects.
This method will raise an error if this object does not contain a composite value.

• uint16_t numFields() const

Return the number of elements in the tuple. If this object contains NULL, return 0; if it
contains a simple value, return 1.

• bool isNull() const

Return if this object is NULL.

• bool isComposite() const

Return if this object is a composite value.

• AnyType& operator<<(const AnyType& inValue)

If this object is NULL, or a composite value that has previously been constructed with the
default constructor, add an element to this object. Otherwise, raise an error.
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Non-Member Functions

• AnyType Null()

Return an AnyType object representing NULL.

• template <class T> T AnyType_cast(const AnyType& inValue)
template <class T> T AnyType_cast(const T& inValue)
template <class T> T AnyType_cast(T& inValue)

Explicit cast that converts AnyType objects to a target type T, but leaves values that already
are of type T unaffected.
Sometimes it is desirable to write generic code that works on both an AnyType object as well
as a value with a concrete type. For instance, a FunctionHandle always returns an AnyType
object. In generic code, however, a FunctionHandle might as well be replaced by just a call
to a “normal” functor or a C++ function pointer, both of which typically return concrete
types (e.g., double).
In generic code, we could write AnyType_cast<double>(func()) so that if the template type
of func is a FunctionHandle, we have an explicit conversion to double, whereas if func is
just a function pointer, the return value of func() passes unchanged.

1.1.3 Math-Library Integration

1.1.3.1 Class HandleMap

Requirements

• EigenType The Eigen type that this HandleMap will wrap. Examples are Eigen::VectorXd
or Eigen::MatrixXd.

• Handle Type conforming to ContiguousDataHandle concept. The two types EigenType::Scalar
and Handle::element_type must coincide.

• MapOptions Passed as template parameter MapOptions to Eigen::Map.

Types

• Index: EigenType::Index

Member functions

• // constructors
HandleMap(const Handle& inHandle) // (1)
HandleMap(const Eigen::MapBase<Derived>& inMappedData) // (2)
HandleMap(const Handle &inHandle, Index inNumElem) // (3)
HandleMap(const Handle &inHandle, Index inNumRows, Index inNumCols) // (4)

Constructor (1) constructs an empty HandleMap that points to NULL. Constructor (2) con-
structs a HandleMap that is backed by a contiguous memory block within an existing Eigen
matrix (or vector). Note that not all of Eigen’s block operations return contiguous memory
blocks. E.g., while the col() method returns contiguous blocks if column-oriented storage
is used, the row() method does not! Constructor (3) and (4) construct a HandleMap that is
backed by a Handle.
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• HandleMap& operator=(const HandleMap& other)

Assign another HandleMap to this object. This does not change any references or pointers,
but copies all elements, i.e., the behavior is identical to other Eigen objects.

• HandleMap& rebind(const Handle& inHandle);
HandleMap& rebind(const Handle& inHandle, Index inSize);
HandleMap& rebind(const Handle& inHandle, Index inRows, Index inCols);
HandleMap& rebind(Index inSize);
HandleMap& rebind(Index inRows, Index inCols);

Change the handle that is backing this object. All except the first form may also be used to
change the dimensions of the matrix (or vector) represented by this object.

Concrete Types

• MappedMatrix: HandleMap<const Matrix, TransparentHandle<double> >

• MutableMappedMatrix: HandleMap<Matrix, TransparentHandle<double, Mutable> >

• NativeMatrix: HandleMap<const Matrix, ArrayHandle<double> >

• MutableNativeMatrix: HandleMap<Matrix, MutableArrayHandle<double> >

• The corresponding four definitions for ColumnVector instead of Matrix.

1.1.4 Resource-Management Shims

1.1.4.1 Class Allocator

Member functions

1.1.4.2 Class NativeRandomNumberGenerator

Member functions

1.1.5 High-Level Types

1.1.5.1 Class FunctionHandle

A FunctionHandle is a function “pointer” to a UDF. A compliant implementation might just
store the object ID of the UDF in the database, and upon invocation look up the function in the
database catalog, do argument verification, retrieve a function pointer in memory and finally invoke
this function pointer.
There are several options for implementations to improve performance. First, if function funcPtr()

returns a non-NULL value, the UDF is implemented using the C++ abstraction layer and can be
called directly, without going through the usual backend functions. Second, the invoke function
is not const, so implementations can cache metadata (and therby modify the FunctionHandle
object).

Types

• udf_ptr: AnyType (*)(AnyType&)
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Member functions

• udf_ptr funcPtr();

If the UDF is a function written using the C++ abstraction layer, implementations may
return a pointer to the C++ function. Alternatively, an implementation may always return
NULL. Callers must not rely on funcPtr returning non-NULL values.

• FunctionHandle& setFunctionCallOptions(uint32_t inFlags)
FunctionHandle& unsetFunctionCallOptions(uint32_t inFlags)
uint32_t getFunctionCallOptions() const

Set or get the current function call options. Options are a bit field of properties as defined
above.

• AnyType invoke(AnyType& args)

Invoke the UDF with the given arguments. Note that args has to be a composite value.

• AnyType operator()()
AnyType operator()(AnyType& arg1, ..., AnyType& argn)

Convenience method. Call invoke with the given arguments combined into one composite
value.

1.1.5.2 Concept ContiguousDataHandle

A ContiguousDataHandle is an opaque pointer to contiguous data that may be augmented by
metadata. For instance, a ContiguousDataHandle may wrap a DBMS-native array that contains
both a pointer to the array data, as well as information about the array’s size. Since elements are
stored contiguously, they can also be accessed using offsets on regular pointers to elements.

Requirements

• T Element type

Types

• element_type: T

Member Functions

• const element_type* ptr() const

Return a pointer to the first element.

• const element_type& operator[](size_t inIndex) const

Return an element.
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Specialized Concepts The concept MutableContiguousDataHandle contains also the following
non-const member functions:

• element_type* ptr()

• element_type& operator[](size_t inIndex)

The concept SizedContiguousDataHandle contains also the following member function:

• size_t size() const

Return the number of elements in this object.

The concept MutableSizedContiguousDataHandle combines both MutableContiguousDataHandle
and SizedContiguousDataHandle.

1.1.5.3 Class Ref

Ref objects are conceptually equivalent to normal C++ references. However, they allow rebinding
to a different target.

Requirements

• T Target type

• IsMutable Boolean parameter indicating if objects of this type can be used to modify the
target

Types

• value_type: T

Member Functions

• Ref& rebind(val_type* inPtr)

Rebind this reference to a different target.

• operator const val_type&() const

Return a const-reference to the target.

• const val_type* ptr() const

Return a const-pointer to the target.

• bool isNull() const

Return if this reference has been bound to a target.

If IsMutable == true, then Ref also contains the following non-const member functions:

• operator val_type&()
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• val_type* ptr()

Moreover it contains:

• Ref& operator=(Ref& inRef)
Ref& operator=(const val_type& inValue)

Assign the target value of inRef or inValue to the target of this object.
It is important to define the first assignment operator because C++ will otherwise perform an
assignment as a bit-by-bit copy. Note that this default operator= would be used even though
there is a conversion path through dest.operator=(orig.operator const val_type&()).

1.1.5.4 Class ByteStream

ByteStream objects are similar to std::istream objects in that they are used to bind (as opposed
to read in the case of std::istream) references to positions in byte sequences. operator>>()
functions are provided for users of ByteStream objects. Each ByteStream object controls a
ByteStreamHandleBuf, which in turn controls a block of memory (the storage/buffer) and has
a current position.

A ByteStream object can be in dry-run mode, in which case operator>> invocations move the
current position, but no rebinding takes place. Dry-run mode is used, e.g., to determine the storage
size needed to hold a DynamicStruct.

Member Functions

• template <size_t Alignment>
size_t seek(std::ptrdiff_t inOffset, std::ios_base::seekdir inDir) // (1)
size_t seek(size_t inPos) // (2)
size_t seek(std::ptrdiff_t inOffset, std::ios_base::seekdir inDir) // (3)

Move the current position in the stream. Variant (1) rounds the new position up to the next
multiple of Alignment.

• size_t available() const

Return the number of characters between the current position and the end of the stream.

• const char_type* ptr() const

Return a pointer to the beginning of the buffer.

• size_t size() const

Return the size of the buffer.

• size_t tell() const

• std::ios_base::iostate rdstate() const
bool eof() const

Return status information about the stream, in a fashion similar to std::istream.
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• bool isInDryRun() const

Return if the stream is in dry-run mode.

• template <class T> const T* read(size_t inCount = 1)

Advance the current position in the buffer to the next address suitable to read a value of type
T and return that address.

Non-Member Functions

• template <class Reference>
ByteStream& operator>>(ByteStream& inStream, Reference& inReference)

Bind a reference to the next suitable address in the buffer. Internally, this function calls
read<typename Reference::val_type>(inReference.size()).

1.1.5.5 Class ByteStreamHandleBuf

ByteStreamHandleBuf objects are similar to std::streambuf objects in that they are in charge
of providing reading functionality from certain types of byte sequences. Unlike std::streambuf,
however, reading refers to binding a reference to the current position in the byte sequence.
ByteStreamHandleBuf objects are associated with a storage objects, which is of a class conform-

ing to the ContiguousDataHandle concept.

Types

• Storage_type: Type conforming to ContiguousDataHandle concept.

Constants

• isMutable: Storage_type::isMutable, i.e., true if Storage_type also conforms to the
MutableContiguousDataHandle concept, and false if not.

Member Functions

• ByteStreamHandleBuf(size_t inSize) // (1)
ByteStreamHandleBuf(const Storage_type& inStorage) // (2)

Constructor (1) constructs an empty buffer initialized with inSize zero characters. Con-
structor (2) initializes a buffer using existing storage.

• size_t seek(size_t inPos)
const char_type* ptr() const;
size_t size() const
size_t tell() const

Change the current position in the buffer, return the start of the buffer, return the size of of
the buffer, and return the current position in the buffer.

The following member functions are only present if isMutable == true.
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• void resize(size_t inSize, size_t inPivot)

Change the size of the buffer, and preserve the old buffer in the following way: Denote by
s the old size of the buffer, by n the new size inSize, and by p the pivot inPivot. Then
bytes [0, p) will remain unchanged, bytes [p, p + n − s) will be initialized with 0, and bytes
[p+ (n− s), s+ (n− s)) will contain the old byte range [p, s).

1.1.5.6 Concept DynamicStructContainer

A DynamicStructContainer may contain member variables of type DynamicStruct. In order for
automatic inclusion in the byte stream of a DynamicStruct, the DynamicStructContainer has to
be provided has the Container template parameter of the DynamicStruct.

Types

• RootContainer_type: Type conforming to DynamicStructContainer concept

• Storage_type: Type conforming to ContiguousDataHandle concept.

• ByteStream_type: A ByteStream class

Constants

• isMutable: Storage_type::isMutable, i.e., true if Storage_type also conforms to the
MutableContiguousDataHandle concept, and false if not.

Member functions

• void initialize()

Initialize the object. The default implementation does nothing.

• const RootContainer_type& rootContainer() const

Return the root-level container.

• const Storage_type& storage() const

Return the storage object.

• const ByteStream_type& byteStream() const

Return the stream object.

Specialized Concepts The concept MutableDynamicStructContainer also has the non-const
member functions:

• RootContainer_type& rootContainer()

• RootStorage_type& storage()

• ByteStream_type& byteStream()
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• template <class SubStruct>
void setSize(SubStruct &inSubStruct, size_t inSize)

Moreover, the types RootContainer_type and Storage_type have to conform to the respective
Mutable concepts, and ByteStream_type has to be a mutable ByteStream class.

1.1.5.7 Class DynamicStruct

A DynamicStruct gives a C++ struct/class interface to a byte stream. Modifying member variables
directly modifies the byte stream, without any need for serialization and deserialization. Member
variables may have variable length that may be changed even after object creation. Moreover,
DynamicStruct is a recursive type in it also allows member variables of type DynamicStruct.

Requirements

• Derived Type of the derived class. Used for static polymorphism.

• Container Type conforming to DynamicStructContainer concept.

Types

• Init_type: Storage_type if the Container_type is a root-level container, and Container_type
otherwise.
This is a convenience definition: While in general a ContiguousDataHandle would be initial-
ized with its container, a top-level DynamicStruct is initialized directly with a ContiguousDataHandle
(without having to instantiate a root-level container first).

• Storage_type: Type conforming to ContiguousDataHandle concept

• Container_type: Type conforming to DynamicStructContainer concept.

• ByteStream_type: Container_type::ByteStream_type, i.e., a ByteStream class as defined
by the container

Member Functions

• DynamicStruct(Init_type& inInitialization) // constructor

• template <class OtherDerived>
DynamicStruct& copy(

const DynamicStruct<
OtherDerived,
typename OtherDerived::Container_type

>& inOtherStruct)

Copy the value of inOtherStruct into this object. Copying will be performed bitwise, and
all member variables will be rebound afterwards.

The following member functions are only present if isMutable == true.

• void setSize(size_t inSize)

Set the size of this object.
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Non-Member Functions

• ByteStream_type& operator>>(ByteStream_type& inStream, Derived& inStruct)

Bind inStruct to the byte stream at the current position.

1.1.6 Modular Fold/Reduce Components

1.1.6.1 Concept Accumulator

A class implementing the Accumulator concept derives from DynamicStruct and stores a transition
state. It contains methods for adding a new tuple to the transition state (equivalent to the transition
function) as well as adding a new transition state (equivalent to the merge function).

Requirements

• Container Type conforming to DynamicStructContainer concept.

Types Inherited from DynamicStruct:

• Init_type: Type passed to constructor. It is only needed to pass through the constructor
argument to the DynamicStruct base class.

• ByteStream_type: Container::ByteStream_type, i.e., the concrete ByteStream type as
defined by Container. A reference of this type is passed to the bind() function.

Member Functions

• Accumulator(Init_type& inInitialization) // constructor

The constructor is expected to call DynamicStruct::initialize(), which eventually will
call the bind() method.1

• void bind(ByteStream_type& inStream)

Bind all elements of the state to the data in the stream.
Implementations bind a member variable x to the current position in the stream by running
inStream >> x. Note that even after running operator>>() on a member variable, there is
no guarantee yet that the variable can indeed be accessed. Instead, if the end of inStream
has been reached, it would still be uninitialized. It is crucial to first check this.
Provided that this methods correctly lists all member variables, all other methods can, how-
ever, rely on the fact that all variables are correctly initialized and accessible.

• Accumulator& operator<<(const tuple_type& inTuple)

Add a new tuple to this transition-state object.

• template <class OtherContainer>
Accumulator& operator<<(const Accumulator<OtherContainer>& inOther)

1Unfortunately, the need for defining an initialize() member cannot be removed. No super class can safely call
initialize() because the Accumulator object has not been completely constructed at that time, yet.

20



1.1 The C++ Abstraction Layer

Add a new transition state to this transition-state object.
OtherContainer must conform to the DynamicStructContainer concept.

• template <class OtherContainer>
Accumulator& operator=(const Accumulator<OtherContainer>& inOther)

The assignment operator must be implemented, because the implicit assignment operator is
not enough: Whenever the length of the Accumulator changes, member variables have to
be rebound. The copy method in DynamicStruct takes care of this and should be explicitly
called instead.
OtherContainer must conform to the DynamicStructContainer concept.
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Figure 1.1: Class diagram for modular fold/reduce
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2 Sampling

Author Florian Schoppmann

History v0.5 Initial revision

2.1 Sampling without Replacement
Given a list of known size n through that we can iterate with arbitrary increments, sampling m
elements without replacement can be implemented in time O(m), i.e., proportional to the sample
size and independent of the list size [73]. Even if the list size n is unknown in advance, sampling
can still be implemented in time O(m(1 + log n

m)) [72].
While being able to iterate through a list with arbitrary increments might seem like a very

modest requirement, it is still not always an option in real-world databases (e.g., in PostgreSQL).
It is therefore important to also consider more constrained algorithms.

2.1.1 Probabilistic Sampling

Probabilistic sampling selects each element in the list with probability p. Hence, the sample size is
a random variable with Binomial distribution B(n, p) and expectation np. The standard deviation
is
√
np(1− p), i.e., approximately √np if p is small. In many applications a fixed sample size m

is needed, however. In this case, we could choose p slightly larger than m/n, so that with high
probability at least m items are selected. Items in excess of m are then discarded.

2.1.1.1 Formal Description

In the following, we discuss how to choose p so that with high probability at least m elements are
sampled, but also not “much” more than m (in fact, only O(

√
m) more in expectation).

In mathematical terms: What is a lower bound on the probability p so that for a random variable
X ∼ B(n, p) we have that Pr[X < m] ≤ ε? We use the Chernoff bound for a fairly good estimate.
It says

Pr[X < (1− δ) · µ] ≤ exp
(
−δ2

2 · µ
)
,

where µ = np is the expectation of X, and δ ≥ 0. We set m = (1− δ) · µ, or equivalently δ = µ−m
µ .

This yields

Pr[X < m] ≤ exp
(
−(µ−m)2

2µ

)
. (2.1.1)

We want the right-hand side of (2.1.1) to be bounded by ε from above. Rearranging this gives

µ ≥ m− ln(ε) +
√

ln2(ε)− 2m ln(ε) .
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2.1 Sampling without Replacement

Since p = µ/n, this immediately translates into a lower bound for p. For instance, suppose we
require ε = 10−6, i.e., we want the probability of our sample being too small to be less than one in
a million. ln(10−6) ≈ −13.8, so we could choose

p ≥ m+ 14 +
√

196 + 28m
n

.

Note that the bound on µ does not depend on n. So in expectation, only O(m+
√
m) items are

selected. At the same time, at least m items are selected with very high probability.

2.1.1.2 Implementation in SQL

In real-world DBMSs, probabilistic sampling has the advantage that it is trivially data-parallel.
Discarding excessive items can be done using the well-known ORDER BY random() LIMIT idiom.
Tests show that PostgreSQL is very efficient in doing the sorting (today’s CPUs can easily sort
1 million numbers in less than a couple hundred milliseconds). In fact, the sorting cost is almost
not measurable if the sample size is only at the scale of several million or less. Since ORDER BY
random() LIMIT is an often-used idiom, there is also hope that advanced optimizers might give it
special treatment. Put together, in order to sample m random rows uniformly at random, we write:

1: SELECT * FROM list WHERE random() < p ORDER BY random() LIMIT m

If necessary, checks can be added that indeed m rows have been selected.

2.1.2 Generating a Random Variate According to a Discrete Probability
Distribution

In practice, probability distributions are often induced by weights (that are not necessarily normal-
ized to add up to 1). The following algorithm is a special case of the “unequal probability sampling
plan” proposed by Chao [20]. Its idea is very similar to reservoir sampling [53].

2.1.2.1 Formal Description
Algorithm WeightedSample(A,w)
Input: Finite set A, Mapping w of each element a ∈ A to its weight w[a] ≥ 0
Output: Random element Sample ∈ A sampled according to distribution induced by w
1: W ← 0
2: for a ∈ A do
3: W ←W + w[a]
4: with probability w[a]

W do
5: Sample ← a

Runtime O(n), single-pass streaming algorithm

Space O(1), constant memory

Correctness Let a1, . . . , an be the order in which the algorithm processes the elements. Denote
by Samplet the value of Sample at the end of iteration t ∈ [n]. We prove by induction over t
that it holds for all i ∈ [t] that Pr[Samplet = ai] = w[ai]

Wt
where Wt :=

∑t
j=1w[aj ].
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2.1 Sampling without Replacement

The base case t = 1 holds immediately by lines 4–5. To see the induction step t− 1→ t, note
that Pr[Samplet = at] = w[at]

Wt
(again by lines 4–5) and that for all i ∈ [t− 1]

Pr[Samplet = ai] = Pr[Samplet 6= at] · Pr[Samplet−1 = ai]
IH=
(

1− w[at]
Wt

)
· w[ai]
Wt−1

= w[ai]
Wt

.

Scalability The algorithm can easily be transformed into a divide-and-conquer algorithm, as
shown in the following.

Algorithm RecursiveWeightedSample(A1, A2, w)
Input: Disjoint finite sets A1, A2, Mapping w of each element a ∈ A1 ∪A2 to its weight w[a] ≥ 0
Output: Random element Sample ∈ A1 ∪A2 sampled according to distribution induced by w
1: Ã← ∅
2: for i = 1, 2 do
3: Samplei ← WeightedSample(Ai, w)
4: Ã← Ã ∪ {Samplei}
5: w̃[Samplei]←

∑
a∈Ai w[a]

6: Sample ← WeightedSample(Ã, w̃)

Correctness Define Wi :=
∑
a∈Ai w[a]. Let a ∈ Ai be arbitrary. Then Pr[Sample = a] =

Pr[Samplei = a] · Pr[Sample ∈ Ai] = w[a]
Wi
· Wi
W = w[a]

W .

Numerical Considerations

• When Algorithm WeightedSample is used for large sets A, line 3 will eventually add two
numbers that are very different in size. Compensated summation should be used [56].

2.1.2.2 Implementation as User-Defined Aggregate

Algorithm WeightedSample is implemented as the user-defined aggregate weighted_sample. Data-
parallelism is implemented as in Algorithm RecursiveWeightedSample.

Input The aggregate expects the following arguments:

Column Description Type

value Row identifier, each row corresponds to an a ∈ A. There is no need to
enforce uniqueness. If a value occurs multiple times, the probability
of sampling this value is proportional to the sum of its weights.

generic

weight weight for row, corresponds to w[a] floating-point

While it would be desirable to define a user-defined aggregate with a first argument of generic
type, this would require a generic transition type (see below). Unfortunately, this is currently
not supported in PostgreSQL and Greenplum. However, the internal C++ accumulator type is a
generic template class, i.e., only the SQL interface contains redundancies.

Output Value of column id in row that was selected.
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2.2 Sampling with Replacement

Components

• Transition State:

Field Name Description Type

weight_sum corresponds to W in Algorithm WeightedSample floating-point

sample corresponds to Sample in Algorithm WeightedSample,
takes value of column value

generic

• Transition Function (state, id, weight): Lines 3–5 of Algorithm WeightedSample

• Merge Function (state1, state2): It is enough to call the transition function with arguments
(state1, state2.sample_id, state2.weight_sum)

Tool Set While the user-defined aggregate is simple enough to be implemented in plain SQL, we
choose a C++ implementation for performance. In the future, we want to use compensated
summation. (Not documented yet.)

2.2 Sampling with Replacement
In Postgres, with the help of the row_number() window function, we could achive sampling with
replacement by joining the input table with a list of randomly-generated numbers using row num-
bers.

2.2.1 Assign Row Numbers for Input Table

SELECT (row_number() OVER ())::integer AS rn, * FROM $input_table;

2.2.2 Generate A Row Number Sample Randomly

SELECT ceiling((1 - random()) * $size)::integer AS rn FROM generate_series(1, $size) s;

2.2.3 Join to Generate Sample

SELECT *
FROM
(

SELECT (row_number() OVER ())::integer AS rn, * FROM $input_table
) src
JOIN
(

SELECT ceiling((1 - random()) * $size)::integer AS rn FROM generate_series(1, $size) s
) sample_rn
USING (rn);
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3 Matrix Operations

Author Florian Schoppmann

History v0.5 Initial revision

While dense and sparse matrices are native objects for MADlib, they are not part of the SQL
standard. It is therefore essential to provide bridges between SQL types and MADlib types, as well
provide a ground set of primitive functions that can be used in SQL.

3.1 Constructing Matrices

3.1.1 Construct a matrix from columns stored as tuples

Let X = (x1, . . . , xn) ⊂ Rm. matrix_agg(X) returns the matrix (x1 . . . xn) ∈ Rm×n.

3.1.1.1 Implementation as User-Defined Aggregate

Name Description Type

In x Vector xi ∈ Rm floating-point vector

Out Matrix M = (x1 . . . xn) ∈ Rm×n floating-point matrix

3.2 Norms and Distances

3.2.1 Column in a matrix that is closest to a given vector

Let M ∈ Rm×n, x ∈ Rm, and dist be a metric. closest_column(M,x, dist) returns a tuple (i, d)
so that d = dist(x,Mi) = minj∈[n] dist(x,Mj) where Mj denotes the j-th column of M .

3.2.1.1 Implementation as User-Defined Function

Name Description Type

In M Matrix M ∈ Rm×n floating-point matrix

In x Vector x ∈ Rm floating-point vector

In dist Metric to use function

Out column_id index i of the column of M that is closest to x integer

Out distance dist(x,Mi) floating-point
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4 Linear Systems

Authors Srikrishna Sridhar

History v1.0 Initial version

4.1 Introduction
In this document, we describe solution methods for systems of a consistent linear equations.

Ax = b (4.1.1)

where x ∈ Rn, A ∈ Rm×n and b ∈ Rm. We assume that all rows of A are non-zero. We denote the
rows of A and b by aTi and bi, respectively. This can be written as

A =
[
aT1 aT2 . . . aTm

]
b =

[
b1 b2 . . . bm

]
(4.1.2)

The algorithms discussed in this document are suitable for large sparse linear systems which
are expensive for ordinary elimination. Amongst the many methods for iteratively solving lin-
ear systems, algorithms like the Jacobi and over-relaxation methods not as effective as methods
like conjugate gradient. The preconditioned conjugate gradient (CG) method is one of the most
commonly used algorithms for solving large sparse systems for symmetric A. The textbook CG
algorithm has been modified to be applicable even when A is not symmetric. The disadvantage of
CG is that in each iteration, it must perform a matrix-vector product. To avoid this computation,
some applications implement a new algorithm called the randomized Kaczmarz (RK) algorithm.
It is a popular choice for extremely large scale applications. The algorithm is known to have a
linear convergence rate and each iteration requires an O(n) operation. In some applications, it
outperforms CG. In general, it is be difficult to predict which one of CG or RK is preferable for a
given linear system.
We now discuss three different approaches to solve linear systems. Direct method, Conjugate

Gradient and Randomized Kaczmarz. Each method has its own advantages and disadvantages
which will be highlighted.

4.2 Direct Methods
Direct methods are suitable for solving small linear systems that fit completely in memory. The
workhorse of several commercial codes is the LU decomposition. The LU decomposition factors a
matrix as the product of a lower triangular matrix (L) and an upper triangular matrix (U) such
that

PA = LU

where P is a permutation matrix which re-orders the rows of A. Such an LU-decomposition can
be used to solve (4.1.1) using

Ax = b⇒ LUx = Pb

Now, we can solve for x using the following steps
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4.3 Iterative Methods

i) Solve for y in the equation Ly = Pb

ii) Solve for x in the equation Ux = b

Since both L and U are triangular matrices, we can efficiently solve both the equations directly
using forward and backward substitutions.

The main advantage of solving linear systems with direct methods is that direct methods are
independent of the conditioning of the system. Solve time depends purely on the sparsity and
size of the matrices. The major disadvantage is that the LU-decomposition has large memory
requirements. Even when the matrix A is sparse, the L and U factors might be dense. The large
memory requirements make it unsuitable for solving large or very sparse linear systems.

4.3 Iterative Methods
In solving (4.1.1) a convergent iterative method starts with an initial estimate x0 of the solution
and generates a sequence of iterates xk that are successively closer to the solution x∗. Iterative
methods are often useful even for linear problems involving a large number of variables. Amongst
the many iterative methods, we will review the two most popular methods; the conjugate gradient
method (CG) and the randomized Kaczmarz (RK) method.

4.3.1 Conjugate Gradient (CG)

The linear conjugate gradient method (not to be confused with the non-linear conjugate gradient
method) to solve large sparse linear systems with a symmetric positive definite A matrix. Such a
system can be stated as:

Ax = b (4.3.1)

where x ∈ Rn, A ∈ Rn×n is symmetric and positive definite and b ∈ Rn.
Unlike direct methods, the time taken to solve a linear system using CG depends on the dis-

tribution of the eigenvalues of the A matrix. In some applications, the A matrix is appropriately
scaled by a process called pre-conditioning to generate an equivalent system with a more favorable
distribution of eigenvalues.
The system (4.3.1) can be restated as the quadratic minimization

minφ(x) := 1
2x

TATAx− bTx

which allows us to interpret CG as an algorithm to minimize convex quadratic functions. In the
rest of this section, we will refer to the gradient ∇φ(x) as the residual of the linear system:

∇φ(x) := r(x) := Ax− b

The linear conjugate gradient method generates a sequence of directions p0, p1 . . . pl that satisfy
an important property called conjugacy which implies that the method can minimize the function
φ(x) in exactly n steps. We refer the reader to the textbook by Nocedal and Wright [55] for details
on the theoretical and algorithmic aspects of CG.
We now discuss an efficient implementation of the linear CG algorithm. In each, iteration (k),

we keep track of the direction vector pk, the residual vector rk and the solution vector xk. The
computational bottleneck is in a matrix-vector multiplication between A and p.
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4.3 Iterative Methods

Algorithm 4.3.1
Input: Symmetric matrix A ∈ Rm× n, b ∈ Rm
Output: Solution to Ax = b

1: Choose x0 ∈ Rn, r0 ← Ax0, p0 ← −r0, k ← 0
2: while ‖rk‖2 ≤ ε do
3: zk ← Apk

4: αk ←
rTk rk
pT
k
zk

5: xk+1 ← xk + αkpk
6: rk+1 ← rk + αkzk

7: βk ←
rTk+1rk+1

rT
k
rk

8: pk+1 ← −rk+1 + βk+1pk
9: k = k + 1

The conjugate gradient method is suitable for large sparse linear systems where direct methods
can often run into memory bottlenecks. This is mainly because, the only memory requirements
of the CG method is to store the latest copies of the vectors pk, rk and xk. The majority of the
computational efforts are spent in the step zk ← Apk. Hence, CG tends to perform better in sparse
linear systems.

Conjugate gradient Least Squares (CGLS)

In this section, we will extend the CG algorithm to be numerically suited to any linear system of
the form (4.1.1). The naive extension of CG to (4.3.1) solves ATAx = AT b. In addition to requiring
an expensive matrix-matrix multiplication algorithm, it has it use of vectors of the form ATAp. An
algorithm with better numerical properties was developed by Hestenes et. al [39].

Algorithm 4.3.2
Input: Matrix A ∈ Rm× n, b ∈ Rm
Output: Solution to Ax = b

1: Choose x0 ∈ Rn, r0 ← b, s0 ← AT b, p0 ← s0, γ0 = ‖s0‖22, k ← 0
2: while ‖rk‖2 ≤ ε do
3: zk ← Apk
4: αk ← γk

zT
k
zk

5: xk+1 ← xk + αkpk
6: rk+1 ← rk − αkzk
7: sk+1 ← AT rk+1
8: γk+1 ← sTk+1sk+1
9: βk+1 ← γk+1

γk
10: pk+1 ← sk+1 + βk+1pk
11: k = k + 1

Paige et. al [57] developed an algorithm called LSQR which has similar performance to CGLS.
We might consider implementing LSQR in case CG performs poorly on linear systems.

4.3.2 Randomized Kaczmarz (RK)

As discussed earlier, the randomized Kaczmarz (RK) algorithm, is a popular algorithm for solving
(4.1.1). Each iteration requires an O(n) storage and computational effort. During each iteration,
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4.3 Iterative Methods

RK picks a row ai of the matrix A, and does an orthogonal projection of the current solution vector
xk to the hyperplane aTi x = b. The update step is given by

xk+1 = xk −
(aTi xk − bi)
‖ai‖2

ai

An alternate interpretation of RK is that the algorithm is identical to the stochastic gradient
descent algorithm on the problem

minφ(x) := 1
2x

TATAx− bTx

The algorithm performs best when a row i is chosen randomly but proportional to ‖ai‖2. Since
sequential scans are preferred for in-database algorithms, a common pre-processing procedure for
RK is to rescale the system so that each equation aTi x = b has the same norm.

Algorithm 4.3.3
Input: Matrix A ∈ Rm× n, b ∈ Rm
Output: Solution to Ax = b

1: Choose x0 ∈ Rn, k ← 0
2: while ‖Ax− b‖2 ≤ ε do
3: xk+1 ← xk −

(aTi xk−bi)
‖ai‖2

4: k = k + 1

The termination criterion of the algorithm is implemented by computing the residual ‖Ax− b‖2
extremely infrequently. Typically, this computation is performed every K epochs where an epoch
is defined as one whole pass of the data which in the case of RK is m iterations.
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5 Singular Value Decomposition

Author Rahul Iyer

History v0.1 Initial version

In linear algebra, the singular value decomposition (SVD) is a factorization of a real or complex
matrix, with many useful applications in signal processing and statistics.
Let A be an m× n matrix, where m ≥ n. Then A can be decomposed as follows:

A = UΣV T ,

where U is a m×n orthonormal matrix, Σ is a n×n diagonal matrix, and V is an n×n orthonormal
matrix. The diagonal elements of Σ are called the singular values.
It is possible to formulate the problem of computing the singular triplets (σi, ui, vi) of A as an

eigenvalue problem involving a Hermitian matrix related to A. There are two possible ways of
achieving this:

i) With the cross product matrix, ATA and AAT

ii) With the cyclic matrix H(A) =
[

0 A
A∗ 0

]

The singular values are the nonnegative square roots of the eigenvalues of the cross product
matrix. This approach may imply a severe loss of accuracy in the smallest singular values. The
cyclic matrix approach is an alternative that avoids this problem, but at the expense of significantly
increasing the cost of the computation.
Computing the cross product matrix explicitly is not recommended, especially in the case of

sparse A. Bidiagonalization was proposed by Golub and Kahan [golub1965] as a way of tridiago-
nalizing the cross product matrix without forming it explicitly.
Consider the following decomposition

A = PBQT ,

where P and Q are unitary matrices and B is an m × n upper bidiagonal matrix. Then the
tridiagonal matrix BBT is unitarily similar to AAT . Additionally, specific methods exist that
compute the singular values of B without forming BBT . Therefore, after computing the SVD of
B,

B = XΣY T ,

it only remains to compute the SVD of the original matrix with U = PX and V = QY .
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5.1 Lanczos Bidiagonalization
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Figure 5.1: Singular Value Decomposition

5.1 Lanczos Bidiagonalization
The Lanczos algorithm is an iterative algorithm devised by Cornelius Lanczos that is an adaptation
of power methods to find eigenvalues and eigenvectors of a square matrix or the singular value
decomposition of a rectangular matrix. It is particularly useful for finding decompositions of very
large sparse matrices.
For a rectangular matrix A, the Lanczos bidiagonalization method computes a sequence of Lanc-

zos vectors pj ∈ Rm and qj ∈ Rn and scalars αj and βj for j = 1, 2, . . . , k as follows:

Algorithm Lanczos Bidiagonalization Algorithm
1: Choose a unit-norm vector q1 and let β0 = 0 and p0 = 0
2: for j = 1, 2, . . . , k do
3: pj ← Aqj − βj−1pj−1
4: αj ← ||pj ||2
5: pj ← pj/αj
6: qj+1 ← AT pj − αjqj
7: βj ← ||qj+1||2
8: qj+1 ← qj+1/βj
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5.2 Dealing with Loss of Orthogonality
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Figure 5.2: Lanczos bidiagonalization of A

After k steps, we can generate the bidiagonal matrix Bk as follows,

α1 β1
α2 β2

α3 β3
. . . . . .

αk−1 βk−1
αk


In exact arithmetic the Lanczos vectors are orthonormal such that,

Pk+1 = (p1, p2, . . . , pk+1) ∈ Rm×(k+1), P Tk+1Pk+1 = Ik+1

Qk+1 = (q1, q2, . . . , qk+1) ∈ Rn×(k+1), QTk+1Qk+1 = Ik+1.

After k Lanczos steps, the Ritz values σ̃i (approximate singular values of A) are equal to the
computed singular values of Bk, and the Ritz vectors are

ũi = Pkxi, ṽi = Qkyi

5.2 Dealing with Loss of Orthogonality
After a sufficient number of steps the Lanczos vectors start to lose their mutual orthogonality,
and this happens together with the appearance in the spectrum of Bj of repeated and spurious
Ritz values. The simplest cure for this loss of orthogonality is full orthogonalization. In Lanczos
bidiagonalization, two sets of Lanczos vectors are computed, so full orthogonalization amounts to
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5.3 Enhancements for Distributed Efficiency

orthogonalizing vector pj explicitly with respect to all the previously computed left Lanczos vectors,
and orthogonalizing vector qj+1 explicitly with respect to all the previously computed right Lanczos
vectors.
Algorithm Lanczos Bidiagonalization with Partial Reorthogonalization
1: Choose a unit-norm vector q1 and let β0 = 0 and p0 = 0
2: for j = 1, 2, . . . , k do
3: pj ← Aqj − βj−1pj−1
4: αj ← ||pj ||2
5: pj ← pj/αj
6: qj+1 ← AT pj − αjqj
7: Orthogonalize qj+1 with respect to Qj
8: βj ← ||qj+1||2
9: qj+1 ← qj+1/βj

There is a variation of this orthogonalization that maintains the effectiveness of full reorthog-
onalization but with a considerably reduced cost. This technique was proposed by Simon and
Zha [66]. The idea comes from the observation that, in the Lanczos bidiagonalization procedure
without reorthogonalization, the level of orthogonality of left and right Lanczos vectors go hand in
hand. This observation led to Simon and Zha to propose what they called the one-sided version
shown in Algorithm 2.

5.3 Enhancements for Distributed Efficiency
Algorithm Distributed version of Lanczos BPRO
1: Choose a unit-norm vector q1 and let β0 = 0 and p0 = 0
2: for j = 1, 2, . . . , k do

Transition step
3: pj ← Aqj − βj−1pj−1
4: αj ← ||pj ||22 . Delayed normalization
5: qj+1 ← AT pj − αjqj

Merge step
6: Concatenate pj across parallel segments
7: Sum qj+1 across parallel segments

Final Step
8: αj ←

√
αj

9: pj ← pj/αj
10: qj ← qj/αj
11: Orthogonalize qj+1 with respect to Qj
12: βj ← ||qj+1||2
13: qj+1 ← qj+1/βj
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6 Regression

Authors Rahul Iyer and Hai Qian

History v0.3 Added section on Clustered Sandwich Estimators
v0.2 Added section on Marginal Effects
v0.1 Initial version, including background of regularization

Regression analysis is a statistical tool for the investigation of relationships between variables.
Usually, the investigator seeks to ascertain the causal effect of one variable upon another - the effect
of a price increase upon demand, for example, or the effect of changes in the money supply upon
the inflation rate. More specifically, regression analysis helps one understand how the typical value
of the dependent variable changes when any one of the independent variables is varied, while the
other independent variables are held fixed.
Regression models involve the following variables:

i) The unknown parameters, denoted as β, which may represent a scalar or a vector.

ii) The independent variables, x

iii) The dependent variables, y

6.1 Multinomial Logistic Regression
Multinomial logistic regression is a widely used regression analysis tool that models the outcomes
of categorical dependent random variables. Generalized linear models identify key ideas shared by
a broad class of distributions thereby extending techniques used in linear regression, into the field
of logistic regression.
This document provides an overview of the theory of multinomial logistic regression models

followed by a design specification of how the model can be estimated using maximum likelihood
estimators. In the final section, we outline a specific implementation of the algorithm that estimates
multinomial logistic regression models on large datasets.

6.1.1 Problem Description

In this section, we setup the notation for a generic multinomial regression problem. Let us consider
an N -dimensional multinomial random variable Z that can take values in J different categories,
where J ≥ 2. As input to the problem, we are given an N × J matrix of observations y. Here
yi,j denotes the observed value for the jth category of the random variable Zi. Analogous to the
observed values, we define a set of parameters π as an N × J matrix with each entry πi,j denoting
the probability of observing the random variable Zi to fall in the jth category. In logistic regression,
we assume that the random variables Z are explained by a design matrix of independent random
variables X which contains N rows and (K + 1) columns. We define a regression coefficient β
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6.1 Multinomial Logistic Regression

as a matrix with K + 1 rows and J columns such that βk,j corresponds to the importance while
predicting the jth value of the kth explanatory variable.

For the multinomial regression model, we assume the observations y are realizations of random
variables Z which are explained using random variables X and parameters β. More specifically, if
we consider the J th category to be the ‘pivot’ or ‘baseline’ category, then the log of the odds of an
observation compared to the J th observation can be predicted using a linear function of variables
X and parameters β.

log
( πi,j
πi,J

)
= log

( πi,j∑J−1
j=1 πi,j

)
=

K∑
k=0

xi,kβk,j (6.1.1)

Solving for πi,j , we have

πi,j =
exp

(∑K
k=0 xi,kβk,j

)
1 +

∑J−1
j=1 exp

(∑K
k=0 xi,kβk,j

) ∀j < J (6.1.2a)

πi,J = 1
1 +

∑J−1
j=1 exp

(∑K
k=0 xi,kβk,j

) (6.1.2b)

In a sentence, the goal of multinomial regression is to use observations y to estimate parameters
β that can predict random variables Z using explanatory variables X.

6.1.2 Parameter Estimation

We evaluate the parameters β using a maximum-likelihood estimator (MLE) which maximizes the
likelihood that a certain set of parameters predict the given set of observations. For this, we define
the following likelihood function:

L(β|y) '
N∏
i=1

J∏
j=1

πi,j
yi,j (6.1.3)

Substituting (6.1.2) in the above expression, we have

=
N∏
i=1

J−1∏
j=1

(
1 +

J−1∑
j=1

e
∑K

k=0 xi,kβk,j
)
eyi,j

∑K

k=0 xi,kβk,j (6.1.4)

Taking the natural logarithm of L(β|y) defined above, we derive the following expression for the
log-likelihood function, l(β) as:

l(β) =
N∑
i=1

N∑
j=1

(
yi,j

K∑
k=0

xi,kβk,j
)
− log

(
1 +

J−1∑
j=1

K∑
k=0

xi,kβk,j
)

(6.1.5)

The maximum likelihood estimator tries maximize the log-likelihood function as defined in Equa-
tion (6.1.5). Unlike linear regression, the MLE has to be obtained numerically. Since we plan to
implement derivative based algorithms to solve maxβ l(β), we first derive expressions for the first
and second derivatives of the log-likelihood function.
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6.1 Multinomial Logistic Regression

We differentiate (6.1.5) with respect to each parameter βk,j

∂l(β)
∂βk,j

=
N∑
i=1

yi,jxi,k − πi,jxi,k ∀k ∀j (6.1.6)

We evaluate the extreme point of the function l(β) by setting each equation of (6.1.6) to zero.
We proceed on similar lines to derive the second order derivative of the l(β) with respect to two
parameters βk1,j1 and βk2,j2

∂2l(β)
∂βk2,j2∂βk1,j1

=
N∑
i=1
−πi,j2xi,k2(1− πi,j1)xi,k1 j1 = j2 (6.1.7a)

=
N∑
i=1

πi,j2xi,k2πi,j1xi,k1 j1 6= j2 (6.1.7b)

6.1.3 Algorithms

Newton’s method is a numerical recipe for root finding of non-linear functions. We apply this
method to solve all nonlinear equations produced by setting (6.1.6) to zero. Newton’s method
begins with an initial guess for the solution after which it uses the Taylor series approximation
of function at the current iterate to produce another estimate that might be closer to the true
solution. This iterative procedure has one of the fastest theoretical rates of convergence in terms of
number of iterations, but requires second derivative information to be computed at each iteration
which is a lot more work than other light-weight derivative based methods.
Newton method can be compactly described using the update step. Let us assume β0 to be the

initial guess for the MLE (denoted by MLE). If the βI is the ‘guess’ for MLE at the Ith iteration,
then we can evaluate βI+1 using

βI+1 = βI − [l′′(βI)]−1 l′(βI) (6.1.8)
= βI − [l′′(βI)]−1XT (y − π) (6.1.9)

where XT (y − π) is matrix notation for the first order derivative. The newton method might
have proven advantage in terms of number of iterations on small problem sizes but it might not
scale well to larger sizes because it requires an expensive step for the matrix inversion of the second
order derivative.
As an aside, we observe that Equation (6.1.6) and (6.1.7a) refers to the first derivative in matrix

form and the second derivative in tensor form respectively. In the implementation phase, we work
with ‘vectorized’ versions of β,X,y,π denoted by β,X,y,π respectively where the matrix are
stacked up together in row major format.
Using this notation, we can rewrite the first derivative in (6.1.6) as:

∂l(β)
∂β

= XT (y − π) (6.1.10)

Similarly, we can rewrite the second derivative in (6.1.7a) as:

∂2l(β)
∂2β

= XTWX (6.1.11)
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whereW is a diagonal matrix of dimension (K+1)×J where the diagonal elements are set πi,j1πi,j2
if j1 6= j2 or πi,j1(1−πi,j2) otherwise. Note that (6.1.11) is merely a compact way to write (6.1.7a).
The Newton method procedure is illustrated in Algorithm 6.1.1.

Algorithm 6.1.1
Input: X,Y and an initial guess for parameters β0

Output: The maximum likelihood estimator βMLE

1: I ← 0
2: repeat
3: Diagonal Weight matrix W : wj1,j2 ← πi,j1πi,j2 if j1 6= j2 or πi,j1(1− πi,j2) otherwise
4: Compute βI+1 using:
5: βI+1 = βI − (XTWX)−1XT (y − π)
6: until βI+1 converges

6.1.4 Common Statistics

Irrespective of the solver that we choose to implement, we would need to calculate the standard
errors and p-value.

Asymptotics tells that the MLE is an asymptotically efficient estimator. This means that it
reaches the following Cramer-Rao lower bound:

√
n(βMLE − β)→ N (0, I−1) (6.1.12)

where I−1 is the Fisher information matrix. Hence, we evaluate the standard errors using the
asymptotic variance of ith parameter (in vector form) of the MLE as:

se(βi) = (XTWX)−1
i (6.1.13)

The Wald statistic is used to assess the significance of coefficients β. In the Wald test, the MLE
is compared with the null hypothesis while assuming that the difference between them is approxi-
mately normally distributed. The Wald p-value for a coefficient provides us with the probability of
seeing a value as extreme as the one observed, when null hypothesis is true. We evaluate the Wald
p-value as:

pi = Pr
(
|Z| ≥

∣∣ βi
se(βi)

∣∣) = 2
[
1− F (se(βi))

]
(6.1.14)

where Z is a normally distributed random variable and F represents the cdf of Z.

6.2 Implementation
For the implementation, we plan to mimic the framework used for the current implementation of
the logistic regression. In this framework, the regression is broken up into 3 steps, denoted as
the transition step, the merge states step, and the final step. Much of the computation is done in
parallel, and each transition step operates on a small number of rows in the data matrix to compute
a portion of the calculation for XTWX, as well as the calculation for XTWα. This is used in the
Hessian calculation in equation 6.1.11.
The merge step aggregates these transition steps together. This consists of summing the XTWX

calculations, summing the XTWα calculations, and updating the bookkeeping. The final step
computes the current solution β, and returns it and its associated statistics.
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6.3 Regularization

The three steps in the framework communicate by passing around state objects. Each state
object carries with it several fields:

coef This is the column vector containing the current solution. This is the β part of βTX with
the exception of β0.

beta The scalar constant term β0 in βTX.

widthOfX The number of features in the data matrix.

numRows The number of data points being operated on.

dir The direction of the gradient it the kth step. Not sure about this one.

grad The gradient vector in the kth step.

gradNew The gradient vector in the x+ 1th step.

X_transp_AX The current sum of XTWX.

X_transp_Az The current sum of XTWα.

logLikelihood The log likelihood of the solution.

Each transition step is given an initial state, and returns a state with the updated X_transp_AX
and X_transp_Az fields. These states are iteratively passed to a merge step, which combines them
two at a time. The final product is then passed to the final step. We expect to use the same system,
or something similar.
We can formalize the API’s for these three steps as:

multilogregr_irls_step_transition(AnyType *Args)
multilogregr_irls_step_merge(AnyType *Args)
multilogregr_irls_step_final(AnyType *Args)

The AnyType object is a generic type used in madlib to retrieve and return values from the backend.
Among other things, an AnyType object can be a NULL value, a scalar, or a state object.

The first step, multilogregr_cg_step_transition, will expect *Args to contains the following
items in the following order: a state object for the current state, a vector x containing a row of
the design matrix, a vector y containing the values of Z for this row, and a state object for the
previous state. The return value for this function will be another state object.
The second step multilogregr_cg_step_merge will expect *Args to contain two state objects,

and will return a state object expressing the merging of the two input objects. The final step
multilogregr_cg_step_final expects a single state object, and returns an AnyType object con-
taining the solution’s coefficients, the standard error, and the solution’s p values.

6.3 Regularization
Usually, y is the result of measurements contaminated by small errors (noise). Frequently, ill-
conditioned or singular systems also arise in the iterative solution of nonlinear systems or optimiza-
tion problems. In all such situations, the vector x = A−1y (or in the full rank overdetermined case
A+y, with the pseudo inverse A+ = (ATA)−1ATX), if it exists at all, is usually a meaningless bad
approximation to x.
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6.3 Regularization

Regularization techniques are needed to obtain meaningful solution estimates for such ill-posed
problems, and in particular when the number of parameters is larger than the number of available
measurements, so that standard least squares techniques break down.

6.3.1 Linear Ridge Regression

Ridge regression is the most commonly used method of regularization of ill-posed problems. Math-
ematically, it seeks to minimize

Q (w, w0;λ) ≡ min
w,w0

[
1

2N

N∑
i=1

(yi − w0 −w · xi)2 + λ

2 ‖w‖
2
2

]
, (6.3.1)

for a given value of λ, where w and w0 are the fitting coefficients, and λ is a non-negative regular-
ization parameter. w is a vector in d dimensional space, and

‖w‖22 =
d∑
j=1

w2
j = wTw . (6.3.2)

When λ = 0, Q is the mean squared error of the fitting.
The intercept term w0 is not regularized, because this term is fully decided by the mean values

of yi and xi and the values of w, and does not affect the model’s complexity.
Q (w, w0;λ) is a quadratic function of w and w0, and thus can be solved analytically

wridge =
(
λId +XTX

)−1
XTy . (6.3.3)

By using the available Newton method (Sec. 6.2.4), the above quantity can be easily calculated
from one single step of the Newton method.
Many packages for Ridge regularization actually regularize the fitting coefficients not for the

fitting model for the original data but for the data that has be scaled. MADlib also provides this
option. When the normalization parameter is set to be True, which is by default False, the data
will be first converted to the following before applying the Ridge regularization.

x′i ←
xi − 〈xi〉
〈(xi − 〈xi〉)2〉

, (6.3.4)

yi ← yi − 〈yi〉 , (6.3.5)
where 〈·〉 =

∑N
i=1 ·/N .

Note that Ridge regressions for scaled data and un-scaled data are not equivalent.

6.3.2 Elastic Net Regularization

As a continuous shrinkage method, ridge regression achieves its better prediction performance
through a bias-variance trade-off. However, ridge regression cannot produce a parsimonious model,
for it always keeps all the predictors in the model [79]. Best subset selection in contrast produces
a sparse model, but it is extremely variable because of its inherent discreteness.
A promising technique called the lasso was proposed by Tibshirani (1996). The lasso is a pe-

nalized least squares method imposing an L1-penalty on the regression coefficients. Owing to the
nature of the L1-penalty, the lasso does both continuous shrinkage and automatic variable selection
simultaneously.
Although the lasso has shown success in many situations, it has some limitations. Consider the

following three scenarios:
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6.3 Regularization

i) In the ‘Number of features’ (p) » ‘Number of observations’ (n) case, the lasso selects at most
n variables before it saturates, because of the nature of the convex optimization problem.
This seems to be a limiting feature for a variable selection method. Moreover, the lasso is
not well defined unless the bound on the L1-norm of the coefficients is smaller than a certain
value.

ii) If there is a group of variables among which the pairwise correlations are very high, then the
lasso tends to select only one variable from the group and does not care which one is selected.

iii) For usual n>p situations, if there are high correlations between predictors, it has been empir-
ically observed that the prediction performance of the lasso is dominated by ridge regression.

These scenarios make lasso an inappropriate variable selection method in some situations.
Hui Zou and Trevor Hastie [42] introduce a new regularization technique called the ‘elastic net’.

Similar to the lasso, the elastic net simultaneously does automatic variable selection and continuous
shrinkage, and it can select groups of correlated variables. It is like a stretchable fishing net that
retains ‘all the big fish’.
The elastic net regularization minimizes the following target function

min
w∈RN

L(w) + λ

[1− α
2 ‖w‖22 + λα‖w‖1

]
, (6.3.6)

where ‖w‖1 =
∑N
i=1 |wi| and N is the number of features.

For the elastic net regularization on linear models,

L(w) = 1
2M

M∑
m=1

(ym − w0 −w · xm)2 , (6.3.7)

where the sum is over all observations and M is the total number of observation.
For the elastic net regularization on logistic models,

L(w) =
M∑
m=1

[
ym log

(
1 + e−(w0+w·xm)

)
+ (1− ym) log

(
1 + ew0+w·xm

)]
, (6.3.8)

where ym ∈ {0, 1}.

6.3.2.1 Optimizer Algorithms

Right now, we support two algorithms for optimizer. The default one is FISTA, and the other is
IGD.

FISTA Fast Iterative Shrinkage Thresholding Algorithm (FISTA) with backtracking step size
[4]:

Step 0: Choose δ > 0 and η > 1, and w(0) ∈ RN . Set v(1) = w(0) and t1 = 1.
Step k: (k ≥ 1) Find the smallest nonnegative integers ik such that with δ̄ = δk−1/η

ik−1

F (pδ̄(v
(k))) ≤ Qδ̄(pδ̄(v

(k)),vk) . (6.3.9)

42



6.3 Regularization

Set δk = δk−1/η
ik−1 and compute

w(k) = pδk

(
v(k)

)
, (6.3.10)

tk+1 =
1 +

√
1 + 4t2k
2 , (6.3.11)

v(k+1) = w(k) + tk − 1
tk+1

(
w(k) −w(k−1)

)
. (6.3.12)

Here,
F (w) = f(w) + g(w) , (6.3.13)

where f(w) is the differentiable part of Eq. (6.3.6) and g(w) is the non-differentiable part. For
linear models,

f(w) = 1
2M

M∑
m=1

(ym − w0 −w · xm)2 + λ(1− α)
2 ‖w‖22 , (6.3.14)

and for logistic models,

f(w) =
M∑
m=1

[
ym log

(
1 + e−(w0+w·xm)

)
+ (1− ym) log

(
1 + ew0+w·xm

)]
+ λ(1− α)

2 ‖w‖22 . (6.3.15)

And for both types of models,

g(w) = λα
N∑
i=1
|wi| . (6.3.16)

And
Qδ(a, b) := f(b) + 〈a− b,∇f(b)〉+ 1

2δ‖a− b‖
2 + g(a) , (6.3.17)

where 〈·〉 is just the usual vector dot product.
And the proxy function is defined as

pδ(v) := arg min
w

[
g(w) + 1

2δ ‖w − (v − δ∇f(v))‖2
]

(6.3.18)

For our case, where g(w) = λα
∑N
i=1 |wi|, the proxy function is simply equal to the soft-thresholding

function

pδ(vi) =


vi − λαδui , if vi > λαδui
0 , otherwise
vi + λαδui , if vi < −λαδui

 (6.3.19)

where
u = v − δ∇f(v) . (6.3.20)

Active set method is used in our implementation for FISTA to speed up the computation.
Considerable speedup is obtained by organizing the iterations around the active set of features -
those with nonzero coefficients. After a complete cycle through all the variables, we iterate on only
the active set till convergence. If another complete cycle does not change the active set, we are
done, otherwise the process is repeated.
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Warm-up method is also used to speed up the computation. When the option parameter
warmup is set to be True, a series of lambda values, which is strictly descent and ends at the
lambda value that the user wants to calculate, will be used. The larger lambda gives very sparse
solution, and the sparse solution again is used as the initial guess for the next lambda’s solution,
which will speed up the computation for the next lambda. For larger data sets, this can sometimes
accelerate the whole computation and might be faster than computation on only one lambda value.
Note: Our implementation is a little bit different from the original FISTA. In the original FISTA,

during the backtracking procedure, the algorithm is searching for a non-negative integer ik and the
new step size is δk = δk−1/η

ik . Thus the step size is non-increasing. Here, we allow the step size
to increase by using δk = δk−1/η

ik−1 so that larger step sizes can be tried by the algorithm. Tests
show that this is actually faster.

IGD The Incremental Gradient Descent (IGD) algorithm is a stochastic algorithm by its na-
ture. So it is difficult to get sparse solutions. What we implemented is Stochastic Mirror Descent
Algorithm made Sparse (SMIDAS). The inverse p-form link function is used

h−1
j (θ) = sign(θj)|θj |p−1

‖θ‖p−2
p

, (6.3.21)

where

‖θ‖p =

∑
j

|θ|p
1/p

, (6.3.22)

and sign(0) = 0.

Choose step size δ > 0.
Let p = 2 log d and let h−1 be as in Eq. (6.3.21)
Let θ = 0
for k = 1, 2, . . .
w = h−1(θ)
v = ∇f(w)
θ̃ = θ − δ v
∀j, θj = sign(θ̃j) max(0, |θ̃j | − λαδ)

The resulting fitting coefficients of this algorithm is not really sparse, but the values are very
small (usually < 1015), which can be safely set to be zero after filtering with a threshold.
This is done as the following: (1) multiply each coefficient with the standard deviation of the

corresponding feature (2) compute the average of absolute values of re-scaled coefficients (3) divide
each rescaled coefficients with the average, and if the resulting absolute value is smaller than
threshold, set the original coefficient to be zero.
IGD is in nature a sequential algorithm, and when running in a distributed way, each segment of

the data runs its own SGD model, and the models are averaged to get a model for each iteration.
This average might slow down the convergence speed, although we acquire the ability to process
large data set on multiple machines. So this algorithm provides an option parallel to let the user
choose whether to do parallel computation.
IGD also implements the warm-up method.
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6.4 Robust Variance via Huber-White Sandwich Estimators

Stopping Criteria Both FISTA and IGD compute the average difference between the coeffi-
cients of two consecutive iterations, and if the difference is smaller than tolerance or the iteration
number is larger than max_iter, the computation stops.
The resulting fitting coefficients of this algorithm is not really sparse, but the values are very

small (usually < 1015), which can be safely set to be zero after filtering with a threshold.
This is done as the following: (1) multiply each coefficient with the standard deviation of the

corresponding feature (2) compute the average of absolute values of re-scaled coefficients (3) divide
each rescaled coefficients with the average, and if the resulting absolute value is smaller than
<em>threshold</em>, set the original coefficient to be zero.
IGD is in nature a sequential algorithm, and when running in a distributed way, each segment of

the data runs its own SGD model, and the models are averaged to get a model for each iteration.
This average might slow down the convergence speed, although we acquire the ability to process
large data set on multiple machines. So this algorithm provides an option <em>parallel</em> to
let the user choose whether to do parallel computation.
IGD also implements the warm-up method.
Stopping Criteria Both FISTA and IGD compute the average difference between the coeffi-

cients of two consecutive iterations, and if the difference is smaller than <em>tolerance</em> or
the iteration number is larger than <em>max_iter</em>, the computation stops.
We note that the Hessian and derivative both depend on β, so the variance estimates will also

depend on β. Rather than allow the user to specify a β value, the implementation computes the
optimal β by running the appropriate regression before computing the robust variance. In cases
where the regression has parameters (regression tolerance, max iterations), the interface allows the
user to specify those parameters.

6.4 Robust Variance via Huber-White Sandwich Estimators
Given N data points, where the ith point is defined by a feature vector xi ∈ RM and a category
scalar yi, where yi ∈ R, yi ∈ {0, 1}, and yi ∈ {1, . . . , L} for linear, logistic, and multi-logistic
regression respectively. We assume that yi is drawn from an independent and identically distributed
(i.i.d.) distribution determined by aK-dimensional parameter vector β (which isK×L dimensional
for multi-logistic regression).
Generally, we are interested in finding the values of β that best predict yi from xi, with best being

defined as the values that maximize some log-likelihood function l(y, x, β). The maximization is
typically solved using the derivative of the likelihood ψ and the Hessian H. More formally, ψ is
defined as

ψ(y, x, β) = ∂l(x, y, β)
∂β

(6.4.1)

and H is defined as

H(y, x, β) = ∂2l(x, y, β)
∂β2 . (6.4.2)

Using these derivatives, one can solve the logistic or linear regression for the optimal solution, and
compute the variance and other statistics of the regression.

6.4.1 Sandwich Operators

However, we may believe that the underlying distribution is not i.i.d., (in particular, the variance is
not independent of xi), in which case, our variance estimates will be incorrect. The Huber sandwich
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estimator is used to get a robust estimate of the variance even if the i.i.d. assumption is wrong.
The estimator is known as a sandwich estimator because the robust covariance matrix S(β) of β
can be expressed in a sandwich formulation, of the form

S(β) = B(β)M(β)B(β). (6.4.3)

The B(β) matrix is commonly called the bread, whereas the M(β) matrix is the meat.

The Bread Computing B is relatively straightforward,

B(β) = N

(
N∑
i

−H(yi, xi, β)
)−1

(6.4.4)

The Meat There are several choices for the M matrix, each with different robustness properties.
In the Huber-White estimator, the matrix M is defined as

MH = 1
N

N∑
i

ψ(yi, xi, β)Tψ(yi, xi, β). (6.4.5)

6.4.2 Implementation

The Huber-White sandwich estimators implemented for linear, logistic, and multinomial-logistic
regression mimic the same framework as the linear/logistic regression implementations. In these
implementations, the gradient and Hessian are computed in parallel, and a final step operates on
the aggregate result.
This framework breaks the computation into three steps: transition step, the merge states step,

and the final step. The transition step computes the gradient and Hessian contribution from each
row in the data matrix. To compute this step, we need to define the derivatives for each regression.

6.4.2.1 Linear Regression Derivatives

For linear regression, the derivative is

∂l(x, y, β)
∂β

= XT (y −Xβ) (6.4.6)

and the Hessian is
∂2l(x, y, β)

∂2β
= −XTX. (6.4.7)

6.4.2.2 Logistic Regression Derivatives

For logistic, the derivative is

∂l(x, y, β)
∂β

=
N∑
i=1

−1yi · β
1 + exp(−1yi · βTx) exp(−1yi · βTx) (6.4.8)

and the Hessian is

∂2l(x, y, β)
∂2β

= −XTAX = −
N∑
i=1

Aiix
T
i xi (6.4.9)
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where A is a diagonal matrix with

Aii =
(
[1 + exp(cTxi))(1 + exp(−cTxi)]

)−1
. (6.4.10)

6.4.2.3 Multi-Logistic Regression Derivatives

For multi-logistic regression, we replace yi with a vector Yi ∈ {0, 1}L, where all entries of Yi are
zero expect the yith entry, which is set to 1. In addition, we choose a baseline category, for which
the odds of all the categories are measured against. Let J ∈ {1, . . . , L} be the baseline category.
We define the variables

πi,j =
exp

(∑K
k=1 xi,kβk,j

)
1 +

∑
j 6=J exp

(∑K
k=1 xi,kβk,j

) , ∀j 6= J (6.4.11)

πi,J = 1
1 +

∑
j 6=J exp

(∑K
k=1 xi,kβk,j

) . (6.4.12)

The derivatives are then

∂l

∂βk,j
=

N∑
i=1

Yi,jxi,k − πi,jxi,k ∀k ∀j (6.4.13)

The Hessian is then

∂2l(β)
∂βk2,j2∂βk1,j1

=
N∑
i=1
−πi,j2xi,k2(1− πi,j1)xi,k1 j1 = j2 (6.4.14)

=
N∑
i=1

πi,j2xi,k2πi,j1xi,k1 j1 6= j2 (6.4.15)

6.4.2.4 Merge Step and Final Step

For the logistic and multi-logistic, the derivative and Hessian are sums in which the terms can be
computed in parallel, and thus in a distributed manner. Each transition step computes a single
term in the sum. The merge step sums two or more terms computed by the transition steps, and
the final step computes the Hessian inverse, and the matrix product between the bread and meat
matrices.

6.5 Marginal Effects
Most of the notes below are based on [25]
A marginal effect (ME) or partial effect measures the effect on the conditional mean of y of a

change in one of the regressors, say xk [18]. In the linear regression model (without any interaction
terms), the ME equals the relevant slope coefficient, greatly simplifying analysis. For nonlinear
models, this is no longer the case, leading to remarkably many different methods for calculating
MEs.
Let E(yi|xi) represent the expected value of a dependent variable yi given a vector of independent

variables xi. In the case where y is a linear function of (x1, . . . , xM ) = x and y is a continuous
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variable, a linear regression model (without any interaction effects) can be stated as follows:

y = xTβ

or
y = β1x1 + . . .+ βMxM .

From the above equation it is straightforward to see that the marginal effect of any variable xk on
the dependent variable is ∂y/∂xk = βk. However, this is true only if there exists no interaction
between the variables. If the output expression contains interaction terms, the model would be

y = β1f1 + . . .+ βNfN .

where fi is a function of the base variables x1, x2, . . . , xM and describes the interaction between
the base variables. In the simple (non-interaction) case, fi = xi and M = N .
The standard approach to modeling dichotomous/binary variables (so y ∈ 0, 1) is to estimate a

generalized linear model under the assumption that y follows some form of Bernoulli distribution.
Thus the expected value of y becomes,

y = G(xTβ),

where G is the specified binomial distribution. Here we assume to use logistic regression and use g to
refer to the inverse logit function. The same approach is applied when y is a discrete, multi-valued
variable.

6.5.1 Discrete change effect

Along with marginal effects we can also compute the following discrete change effects.

i) Unit change effect, which should not be confused with the marginal effect:

∂y

∂xk
= P (y = 1|X,xk + 1)− P (y = 1|X,xk)

= g(β1x1 + · · ·+ βk(xk + 1) + βlxl)
− g(β1x1 + · · ·+ βkxk + βlxl)

ii) Centered unit change:

∂y

∂xk
= P (y = 1|X,xk + 0.5)− P (y = 1|X,xk − 0.5)

iii) Standard deviation change:

∂y

∂xk
= P (y = 1|X,xk + 0.5δk)− P (y = 1|X,xk − 0.5δk)

iv) Min-max change:

∂y

∂xk
= P (y = 1|X,xk = xmaxk )− P (y = 1|X,xk = xmink )

48



6.5 Marginal Effects

6.5.2 Categorical variables

Categorical variables are converted to dummy variables to use in the regression. The regression
method treats the dummy variable as a continuous variable and returns a coefficient for each dummy
variable. To compute marginal effect for each such dummy variable, similar to the regression, we
can treat it as a continuous variable, and compute the partial derivative of the response variable
with respect to this variable. However, since these variables are discrete, using the partial derivative
is inappropriate.
An alternative method is to compute the discrete change for each dummy variable with respect

to the reference level of the categorical variable. If xk is a dummy variable corresponding to the
value v of a categorical variable and let xl represent another dummy variable representing value w
of the same categorical variable. The discrete difference with respect to xk is defined as:

∆xky = ysetk − yunsetk

where,

ysetk = β1f1 + . . .+ βkfk(xk = 1) + . . .+ βlfl(xl = 0) + . . . ,

and
yunsetk = β1f1 + . . .+ βkfk(xk = 0) + . . .+ βlfl(xl = 0) + . . . .

If the y expression contains dummy variable (xp) corresponding to the reference level of the
categorical variable (represented as r), then that variable will be unset (xp = 0) in yset and set
(xp = 1) in yunset. Note that in many cases, the dummy variable for the reference level does not
appear in the regression model and unsetting the variable for value w when w 6= r is enough in the
second term (yunset).

In MADlib, we only support the discrete difference method for dummy variables. Let’s walk
through the computation of marginal effect for color_blue when the input for the regression is

array[1, color_blue, color_green, degree_college, degree_college * color_blue,
degree_college * color_green, gpa, gpa^2, degree_college * gpa,
degree_college * gpa^2, weight]

for a specific row of the data. Here color_blue and color_green belong to the same categorical
variable, with color_red being the reference variable for it (not included in the regressor list).

i) The value of color_blue would be set equal to 1

ii) The value of color_blue in its interaction terms would also be set to 1
(i.e. degree_college * color_blue = degree_college)

iii) The value of color_green would be set equal to 0

iv) The value of color_green in its interaction terms would also be set to 0
(i.e. degree_college * color_green = 0)

v) Compute resulting predicted values of response variable (yset)

vi) Set value of color_blue equal to 0

vii) Set value of color_blue in its interaction terms to 0
(i.e. degree_college * color_blue = 0)
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viii) Set value of color_green equal to 0 and also in its interaction terms
(i.e. degree_college * color_green = 0)

ix) Compute resulting predicted values of response variable (yunset)

x) Compute (yset − yunset)

6.5.3 AME vs MEM

There are two main methods of calculating the marginal effects for dependent variables.

i) The first uses the average of the marginal effects at every sample observation (AME).

ii) The second approach calculates the marginal effect for xk by taking predicted probability
calculated when all regressors are held at their mean value from the same formulation with
the exception of variable under consideration (MEM).

It is generally viewed to be problematic to evaluate marginal effects at means (MEM) of dummy
variables since means of dummies refer to nonexisting observations. In MADlib, we currently only
provide the option to compute the average marginal effects (AME). In future versions, we aim to
provide various options including marginal effects at means and marginal effects at a representative
value. We currently do provide the option to compute the margial effect on a separate dataset,
which could be used as a workaround by including just the mean value or the representative value.

6.5.4 Marginal effects for regression methods

Below we derive the marginal effects for the various regression methods in MADlib. We assume a
general formulation of the output y as

y = g(β1f1 + β2f2 + . . .+ βNfN ).

As stated above, each fi is a function of all the base variables x1, x2, . . . , xM and describes the
interaction between the base variables. In the simple (non-interaction) case, fi = xi.
Let’s represent the vector of coefficients as

β =

β1
...
βN

 ,
and the partial derivative of the x terms in the output with respect to each variable xi (Jacobian
matrix) as

J =



∂f1
∂x1

, ∂f1
∂x2

, ∂f1
∂x3

, . . . , ∂f1
∂xM

∂f2
∂x1

, ∂f2
∂x2

, ∂f2
∂x3

, . . . , ∂f2
∂xM

∂f3
∂x1

, ∂f3
∂x2

, ∂f3
∂x3

, . . . , ∂f3
∂xM

...
∂fN
∂x1

, ∂fN
∂x2

, ∂fN
∂x3

, . . . , ∂fN
∂xM


In the above equation, for each element Jn,m the column corresponds to a base varnable (xm) and

the row corresponds to a term in the output expression (fn). Let ∇fn denote the n-th row of J (i.e.
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gradient of fn), and let J(m) = ∂f
∂xm

denote the m-th column of J , where f = (f1, . . . fN )T . If xk is
a categorical variable and if discrete differences are required for it, then the column corresponding
to xk can be replaced by,

∂f

∂xk
= fsetk − funsetk

=
[
fsetk0 , f setk1 , f setk2 , . . . , f setkN−1

]T
−
[
funsetk0 , funsetk1 , funsetk2 , . . . , funsetkN−1

]T
=
[
fsetk0 − funsetk0 , f setk1 − funsetk1 , f setk2 − funsetk2 , . . . , f setkN−1 − f

unsetk
N−1

]T
,

where

f setki = fi(. . . , xk = 1, xl = 0, xr = 0)
and
funsetki = fi(. . . , xk = 0, xl = 0, xr = 1),

∀xl ∈ (set of dummy variables related to xk excluding the reference variable) and xr = reference
variable of xk (if present). The response probability corresponding to fsetk is denoted as P setk .

6.5.4.1 Linear regression

For the linear regression equation of the form y = fTβ, the marginal effect for each variable (xi) is
the same as the coefficient for that variable (βi). When interaction effects are present, the marginal
effect will be,

ME = JTβ

6.5.4.2 Logistic regression

In logistic regression:

P = 1
1 + e−f

Tβ

= 1
1 + e−z

=⇒ ∂P

∂Xk
= P · (1− P ) · ∂z

∂xk
,

where the partial derivative in the last equation equals to βk if there is no interaction terms. Thus
the marginal effect for all variables presented as a vector will be,

ME = P · (1− P ) · JTβ

For categorical variables, we compute the discrete difference as described in 6.5.2.
For variable xk:

MEk = P set − P unset
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6.5.4.3 Multilogistic regression

The probabilities of different outcomes for multilogistic regression are expressed as,

P l = P (y = l|x) = ef
Tβl

1 +
L−1∑
q=1

ef
Tβq

= ef
Tβl

L∑
q=1

ef
Tβq

,

where βl represents the coefficient vector for category l, with L being the total number of categories.
The coefficients are set to zero for one of the outcomes, called the “base outcome” or the “reference
category”. Here, without loss of generality, we let βL = 0.
Thus,

∂P l

∂xm
= 1

L∑
q=1

ef
Tβq

∂ef
Tβl

∂xm
− ef

Tβl L∑
p=1

ef
Tβp

2 ·
∂

∂xm

L∑
q=1

ef
Tβq

= ef
Tβl

L∑
q=1

ef
Tβq

∂fTβl

∂xm
− ef

Tβl

L∑
p=1

ef
Tβp

L∑
q=1

ef
Tβq

L∑
p=1

ef
Tβp

∂fTβq

∂xm

Hence, for every m-th variable xm, we have the marginal effect for category l as,

ME l
m = P l

J(m)Tβl −
L−1∑
q=1

P q · J(m)Tβq
 .

Vectorizing the above equation, we get

ME l = P l
(
JTβl − JTBp

)
,

where p = (P 1, . . . , PL−1)T is a column vector and B = (β1, . . . ,βL−1) is a N × (L − 1) matrix.
Finally, we can simplify the computation of the marginal effects matrix as

ME = JTBdiag(p)− JTBppT .

Once again, for categorical variables, we compute the discrete difference as described in 6.5.2.
For categorical variable xk, the k-th row of ME will be,

MEk =
(
psetk − punsetk

)T
6.5.5 Standard Errors

The delta method is a popular way to estimate standard errors of non-linear functions of model
parameters. While it is straightforward to calculate the variance of a linear function of a random
variable, it is not for a nonlinear function. The delta method therefore relies on finding a linear
approximation of the function by using a first-order Taylor expansion.
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We can approximate a function g(x) about a value a as,

g(x) ≈ g(a) + (x− a)g′(a)

Taking the variance and setting a = µx,

V ar(g(X)) ≈
[
g′(µx)

]2
V ar(X)

Linear Regression

Using this technique, to compute the variance of the marginal effects at a given observation value
in linear regression, we obtain the standard error by first computing the marginal effect’s derivative
over the coefficients, which is a M ×N matrix Smn = ∂MEm

∂βn

S = ∂JTβ

∂β

= JT

Using the delta method we can then compute the variance of the marginal effects as,

V ar(ME) = S · V ar(β) · ST

where V ar(β) is a N × N matrix, S is a M × N matrix, M is the number of base variables, and
N is the total number of terms in independent variable list (i.e. length of β).
Note: The V ar(β) is computed using the training data employed by the underlying regression,

but not the data used to compute the marginal effects. The delta matrix (S) is computed over the
data for which marginal effects is desired (averaged over the data for AME).

Logistic Regression

Similar to linear regression, we obtain the variance matrix by first computing the delta matrix, S:

Smn = ∂

∂βn

[
P (1− P ) · ∂z

∂xm

]
= P (1− P ) · ∂

∂βn

(
∂z

∂xm

)
+ ∂ [P (1− P )]

∂βn
· ∂z
∂xm

= P (1− P ) · ∂2z

∂xm∂βn
+ P (1− P )(1− 2P ) · ∂z

∂βn
· ∂z
∂xm

,

where P = 1
1 + e−z

and z = fTβ.

Using the definition of z, we can simplify S a little bit

Smn = P (1− P )
(
∂fn
∂xm

+ (1− 2P ) · fn · J(m)Tβ
)

Thus, n-th column of S

cn(S) = P (1− P )
[
∇fTn + (1− 2P ) · fn · JTβ

]
.
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Vectorizing this equation to express for the complete matrix,

S = P (1− P )
(
JT + (1− 2P ) · (JTβ)fT

)
And for categorical variables, we replace P (1− P ) · (∂z/∂xm) with ∆xmP in Smn, we get

Smn = ∂(P set − P unset)
∂βn

= P set(1− P set) · fsetn − P unset(1− P unset) · funsetn

Similar to linear regression, we can then compute the variance of the marginal effects as,

V ar(ME) = S · V ar(β) · ST

where V ar(β) is computed on the original training dataset, while S is averaged over the dataset
on which marginal effect is desired (could be just a single datapoint).

Multinomial Logistic Regression

For multinomial logistic regression, the coefficients β form a matrix of dimension N × (L − 1)
where L is the number of categories and N is the number of features (including interaction terms).
In order to compute the standard errors on the marginal effects of category l for independent
variable xm, we need to compute the term ∂MElm

∂βl′n
for each l′ ∈ {1 . . . (L − 1)} and n ∈ {1 . . . N}.

Note that m here is restricted to be in the set {1 . . .M}. The result is a column vector of length
(L−1)×N denoted by ∂MElm

∂β . Hence, for each category l ∈ {1 . . . (L−1)} and independent variable
m ∈ {1 . . .M}, we perform the following computation

V ar(ME l
m) = ∂ME l

m

∂β

T

V
∂ME l

m

∂β
, (6.5.1)

where V is the variance-covariance matrix of the multinomial logistic regression vectorized in the
same order in which the partial derivative is vectorized.
From our earlier derivation, we know that the marginal effect for multinomial logistic regression

for the m-th index of data vector x is given as:

ME l
m = P l

J(m)Tβl −
L−1∑
q=1

P qJ(m)Tβq


where

P l = P (y = l|x) = efβ
l

L∑
q=1

efβ
q

∀l ∈ {1 . . . (L− 1)}.

We now compute the term ∂MElm
∂β . First, we define the indicator function, δ, as:

δi,j =
{

1 if i = j

0 otherwise
.
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We can show that for each l′ ∈ {1 . . . (L− 1)} and n ∈ {1 . . . N}, the partial derivative will be

∂ME l
m

∂βl′n
= ∂P l

∂βl′n

J(m)Tβl −
L−1∑
q=1

P qJ(m)Tβq
+ P l

 ∂

∂βl′n
(J(m)Tβl)− ∂

∂βl′n

L−1∑
q=1

P qJ(m)Tβq


where
∂P l

∂βl′n
= P lfn(δl,l′ − P l

′)

The expression above can be simplified to obtain

∂ME l
m

∂βl′n
= P lfn(δl,l′ − P l

′)

J(m)Tβl −
L−1∑
q=1

P qJ(m)Tβq
+

P l

δl,l′ ∂fn
∂xm

− P l′fnJ(m)Tβl′ + P l
′
fn

L−1∑
q=1

P qJ(m)Tβq − P l′ ∂fn
∂xm


= fn(δl,l′ − P l

′) · P l
J(m)Tβl −

L−1∑
q=1

P qJ(m)Tβq
+

P l

δl,l′ ∂fn
∂xm

− fn · P l
′

J(m)Tβl′ −
L−1∑
q=1

P qJ(m)Tβq
− P l′ ∂fn

∂xm


= fn(δl,l′ − P l

′)ME l
m + P l

[
δl,l′

∂fn
∂xm

− fnME l′
m − P l

′ ∂fn
∂xm

]
.

Again, the above computation is performed for every l ∈ {1 . . . (L−1)} (base outcome is skipped)
and every m ∈ {1 . . .M}, with each computation returning a column vector of size (L− 1)×N .
For categorical variables, we use the discrete difference value of ME l

m to compute the standard
error as,

∂ME l
m

∂βl′n
= ∂P setm,l

∂βl′n
− ∂P unsetm,l

∂βl′n

= P setm,lfsetmn (δl,l′ − P setm,l
′)− P unsetm,lfunsetmn (δl,l′ − P unsetm,l

′)

= −
(
P setm,lfsetmn P setm,l

′ − P unsetm,lfunsetmn P unsetm,l
′)+

δl,l′
(
P setm,lfsetmn − P unsetm,lfunsetmn

)
,

where

P setm,l = ef
setmβl

L∑
q=1

ef
setmβq

and

P unsetm,l = ef
unsetmβl

L∑
q=1

ef
unsetmβq

∀l ∈ {1 . . . (L− 1)}.
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6.6 Clustered Standard Errors
Adjusting standard errors for clustering can be important. For example, replicating a dataset
100 times should not increase the precision of parameter estimates. However, performing this
procedure with the IID assumption will actually do this. Another example is in economics of
education research, it is reasonable to expect that the error terms for children in the same class are
not independent. Clustering standard errors can correct for this.

6.6.1 Overview of Clustered Standard Errors

Assume that the data can be separated into m clusters. Usually this can be down by grouping the
data table according to one or multiple columns.
The estimator has a similar form to the usual sandwich estimator

S(β) = B(β)M(β)B(β) (6.6.1)

The bread part is the same as sandwich estimator

B(β) =
(
−

n∑
i=1

H(yi,xi,β)
)−1

(6.6.2)

=
(
−

n∑
i=1

∂2l(yi,xi,β)
∂βα∂ββ

)−1

(6.6.3)

where H is the hessian matrix, which is the second derivative of the target function

L(β) =
n∑
i=1

l(yi,xi,β) . (6.6.4)

The meat part is different
M(β) = ATA (6.6.5)

where the m-th row of A is
Am =

∑
i∈Gm

∂l(yi,xi,β)
∂β

(6.6.6)

where Gm is the set of rows that belong to the same cluster.

6.6.2 Implementation

We can compute the quantities of B and A for each cluster during one scan through the data table
in an aggregate function. Then sum over all clusters to the full B and A in the outside of the
aggregate function. At last, the matrix mulplitications are done in a separate function on master.
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7 Clustering (k-Means et al.)

Author Florian Schoppmann (version 0.5 only)

History v0.5 Initial revision of design document, complete rewrite of module, ar-
bitrary user-specifyable distance and recentering functions

v0.3 Multiple seedings methods (kmeans++, random, user-specified list
of centroids), multiple distance functions (corresponding recentering
function hard-coded), simplified silhouette coefficient as goodness-of-
fit measure

v0.1 Initial version, always use kmeans++ for seeding

Clustering refers to the problem of partitioning a set of objects into homogeneous subsets, i.e.,
such that objects in the same group have similar properties. Arguably the best-known clustering
problem is k-means. Here, one is given n points x1, . . . , xn ∈ Rd, and the goal is to position k
centroids c1, . . . , ck ∈ Rd so that the sum of squared Euclidean distances between each point and
its closest centroid is minimized. A cluster is identified by its centroid and consists of all points for
which this centroid is closest. Formally, we wish to minimize the following objective function:

(c1, . . . , ck) 7→
n∑
i=1

k
min
j=1

dist(xi, cj) ,

where dist(x, y) := ‖x−y‖22. A straightforward generalization of the above minimization problem is
to choose a different metric dist. Strictly speaking, this is no longer k-means; for instance, choosing
dist(x, y) = ‖x− y‖1 yields the k-median problem instead.
Despite certain reservations, we follow the practice of many authors and use “k-means” also to

refer to a particular algorithm (as opposed to an optimization problem), as discussed below.

7.1 Overview of Algorithms
The k-means problem is NP-hard in general Euclidean space (even for just two clusters) [2] and for
a general number of clusters (even in the plane) [49]. However, the local-search heuristic proposed
by Lloyd [48] performs reasonably well in practice. In fact, it is so ubiquitous today that it is often
referred to as the standard algorithm or even just the k-means algorithm. At a high level, it works
as follows:

i) Seeding phase: Find initial positions for k centroids c1, . . . , ck.

ii) Assign each point x1, . . . , xn to its closest centroid.

iii) Move each centroid c to a position that minimizes the sum of distances between c and each
point assigned to c. (Note that if “distance” refers to the squared Euclidean distance, then
this position is the barycenter/mean of all points assigned to c.)
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7.2 Seeding Algorithms

iv) If convergence has been reached, stop. Otherwise, goto (ii).

Since the value of the objective function decreases in every step, and there are only finitely
many clusterings, the algorithm is guaranteed to converge to a local minimum [50, Section 16.4].
While it is known that there are instances for which Lloyd’s heuristic takes exponentially many
steps [70], it has been shown that the algorithm has polynomial smoothed complexity [4]—thus
giving some theoretical explanation for good results in practice. With a clever seeding technique,
Lloyd’s heuristic is moreover O(log k)-competitive [3].

7.1.1 Algorithm Variants

Seeding The quality of k-means is highly influenced by the choice of the seeding [3]. The following
is a non-exhaustive list of options:

i) Manual: User-specified list of initial centroid positions.

ii) Uniformly at random: Choose the k centroids uniformly at random among the point set

iii) k-means++: Perform seeding so that the objective function is minimized in expectation [3]

iv) Use a different clustering algorithm for determining the seeding [52]

v) Run k-means with multiple seedings and choose the clustering with lowest cost

Repositioning Most k-means formulations in textbooks do not detail the case where a centroid
has no points assigned to it. It is an easy observation that moving a stray centroid in this case
can only decrease the objective function. This can be done in a simple way (move onto a random
point) or more carefully (e.g., move so that the objective function is minimized in expectation).

Convergence Criterion There are several reasonable convergence criteria. E.g., stop when:

i) The number of repositioned centroids is below a given threshold

ii) The change in the objective drops below a given threshold

iii) The maximum number of iterations has been reached

iv) See, e.g., Manning et al. [50, Section 16.4] for more options.

Variable Number of Clusters The number of clusters k could be determined by the seeding
algorithm (instead of being a parameter) [52]. Strictly speaking, however, the algorithm should not
be called k-means in this case.

7.2 Seeding Algorithms
In the following, we describe the seeding methods to be implemented for MADlib.

7.2.1 Uniform-at-random Sampling

Uniform-at-random sampling just uses the algorithms described in Section 2.1.
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7.2.2 k-means++

k-means++ seeding [3] starts with a single centroid chosen randomly among the input points. It then
iteratively chooses new centroids from the input points until there are a total of k centroids. The
probability for picking a particular point is proportional to its minimum distance to any existing
centroid. Intuitively, k-means++ favors seedings where centroids are spread out over the whole
range of the input points, while at the same time not being too susceptible to outliers.

7.2.2.1 Formal Description
Algorithm k-means++(k, P, dist, C)
Input: Number of desired centroids k, set P of points in Rd, metric dist,

set C of initial centroids
Output: Set of centroids C
1: if C = ∅ then
2: C ← {initial centroid chosen uniformly at random from P}
3: while |C| < k do
4: C ← C ∪ {random p ∈ P with probability proportional to minc∈C dist(p, c)}

Runtime A naive implementation needs Θ(k2n) distance calculations, where n = |P |. A single
distance calculation takes O(d) time.

Space Store k centroids.

Subproblems The existing weighted_sample subroutine can be used for:
• Line 2: Sample uniformly at random
• Line 4: Sample according to a discrete probability distribution.

The number of distance calculations could be reduced by a factor of k if we store, for each point
p ∈ P , the distance to its closest centroid. Then, each iteration only needs n distance calculations
(i.e., only between the most recently added centroid and all points). In total, these are Θ(kn)
distance calculations. Making this idea explicit leads to the following algorithm.

Algorithm k-means++-ext(k, P, dist)
Input: Number of desired centroids k, set P of points in Rd, metric dist,

set C of initial centroids
Output: Set of centroids C
Initialization/Precondition: For all p ∈ P : δ[p] = minc∈C dist(p, c) (or δ[p] =∞ if C = ∅)
1: while |C| < k do
2: lastCentroid ← weighted_sample(P, δ) . δ denotes the mapping p 7→ δ[p]
3: C ← C ∪ {lastCentroid}
4: for p ∈ P do
5: if dist(p, lastCentroid) < δ[p] then
6: δ[p]← dist(p, lastCentroid)

Tuning The inner for-loop in line 4 and weighted_sample in line 2 could be combined. With this
improvement, only one pass over P is necessary.

Runtime O(dkn) as explained before.
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Space Store k centroids and n distances.

Scalability The outer while-loop is inherently sequential because the random variates in each
iteration depend on all previous iterations. The inner loop, however, can be executed with
data parallelism.

7.2.2.2 Implementation as User-Defined Function

In general, the performance benefit of explicitly storing points (i.e., choosing k-means++-ext over
k-means++) depends on the DBMS, the data, and the operating environment. The pattern of
updating temporary state is made a bit more awkward in PostgreSQL due to its legacy of versioned
storage. PostgreSQL performs an update by first inserting a new row and then marking the
old row as invisible [69, Section 23.1.2]. As a result, for updates that touch many rows it is
typically faster to copy the updated data into a new table (i.e., CREATE TABLE AS SELECT and DROP
TABLE) rather than issue an UPDATE. Given these constraints, we currently choose to only implement
algorithm k-means++ (but not k-means++-ext) as the user-defined function kmeanspp_seeding.

In- and Output The UDF expects the following arguments, and returns the following values:

Name Description Type

In rel_source Relation containing the points as rows relation

In expr_point Point coordinates, i.e., the point p expression
(floating-point vector)

In k Number of centroids integer

In fn_dist Function returning the distance be-
tween two vectors

function

In initial_centroids Matrix containing the initial centroids
as columns. This argument may be
omitted (corresponding to an empty set
C of initial centroids).

floating-point matrix

Out Matrix containing the k centroids as
columns

floating-point matrix

Components The set of centroids C is stored as a dense floating-point matrix that contains the
centroids as columns vectors. Algoritm k-means++ can be (roughly) translated into SQL as follow.
We assume here that all function arguments are available as constants, and the matrix containing
the centroids as columns is available as centroids. Line 2 becomes:

1: SELECT ARRAY[weighted_sample($expr_point, 1)]
2: FROM $rel_source

Line 4 is implemented using essentially the following SQL.
1: SELECT centroids || weighted_sample(
2: $expr_point, (
3: closest_column(
4: centroids,
5: $expr_point,
6: fn_dist
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7: )).distance
8: ) FROM $rel_source

See Section 3.2.1 for a description of closest_column.

7.2.2.3 Historical Implementations

Implementation details and big-data heuristics that were used in previous versions of MADlib are
documented here for completeness.

v0.2.1beta and earlier In lines 2 and 4 of Algorithm k-means++ use a random sample P ′ ( P .
Here P ′ will be a new random sample in each iteration. Under the a-priori assumption that
a random point belongs to any of the k (unknown) clusters with equal probability, sample
enough points so that with high probability (e.g., p = 0.999) there is a point from each of the
k clusters.
This is the classical occupancy problem (also called balls-into-bins model) [28]: Throwing r
balls into k bins, what is the probability that no bin is empty? The exact value is

u(r, k) = k−r
k∑
i=0

(−1)i
(
k

i

)
(k − i)r .

For r, k →∞ so that r/k = O(1) we have the limiting form u(r, k)→ (1− e−r/k)k =: ũ(r, k).
Rearranging ũ(r, k) > p gives − log(1− k

√
p) · k < r. The smallest r satisfying this inequality

is chosen as the size of the sample set.

7.3 Standard algorithm for k-means clustering
The standard algorithm has been outlined in Section 7.1. The formal description and our imple-
mentation are given below.

7.3.1 Formal Description
Algorithm k-means(k, P, dist)
Input: Set of initial centroids C, set P of points, seeding strategy Seeding, metric dist,

centroid function centroid, convergence strategy Convergence
Output: Set C of final means
Initialization/Precondition: i = 0
1: repeat
2: i← i+ 1
3: Cold ← C
4: C ←

⋃
c∈C{centroid{p ∈ P | arg minc′∈C dist(p, c′) = c}}

5: C ← Seeding(k, P, dist, C) . Reseed “lost” centroids (if any)
6: until Convergence(C,Cold, P, i)

Runtime See discussion in Section 7.1.

Space Store 2k centroids (both sets C and Cold)
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Scalability The outer loop is inherently sequential. The recentering in line 4 is data-parallel
(provided that the sets C and Cold are available on all computation nodes). Likewise, the
convergence check in line 6 is data-parallel if it only relies on distances between points p and
the set of centroids C, or the number of iterations.

7.3.2 Implementation as User-Defined Function

Algorithm k-means is implemented as the user-defined function kmeans. We choose to not make
the convergence criterion a function argument but instead settle for parameters for the most typical
criteria. Should the need arise, we might revoke that decision in the future. Moreover, the seeding
strategy is currently not an argument, but kmeanspp_seeding is always used in line 5.

In- and Output The UDF expects the following arguments, and returns the following values:

Name Description Type

In rel_source Relation containing the points as tu-
ples

relation

In expr_point Point coordinates, i.e., the point p expression
(floating-point vector)

In initial_centroids Matrix containing the initial cen-
troids as columns

floating-point matrix

In fn_dist Function returning the distance be-
tween two vectors

function

In agg_centroid Aggregate returning the centroid for
a set of points

function

In max_num_iterations Convergence criterion: Maximum
number of iterations

integer

In min_frac_reassigned Convergence criterion: Convergence
is reached if the fraction of points
being reassigned to another centroid
drops below conv_level

floating-point

Out Matrix containing the k centroids as
columns

floating-point matrix

Components The set of centroids C is stored as a dense floating-point matrix that contains the
centroids as columns vectors. Algoritm k-means can be (roughly) translated into SQL as follow.
We assume here that all function arguments are available as constants, and the matrix containing
the centroids is available as centroids. (These variables, which are unbound in the SQL statement,
are shown in italic font.) Line 4 becomes:

1: SELECT matrix_agg(_centroid)
2: FROM (
3: SELECT $agg_centroid(_point) AS _centroid
4: FROM (
5: SELECT
6: $expr_point AS _point,
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7: (closest_column(
8: centroids,
9: $expr_point,

10: fn_dist
11: )).column_id AS _new_centroid_id
12: FROM $rel_source
13: ) AS _points_with_assignments
14: GROUP BY _new_centroid_id
15: ) AS _new_centroids

See Section 3.1.1 for a description of matrix_agg.
It is a good idea to also compute the number of reassigned centroids, so that both line 4 and the

convergence check in line 6 can be computed with one pass over the data. To that end, we extend the
inner-most query to also compute the previous closest centroid (i.e., we do a second closest_column
call where we pass matrix old_centroids as first argument). During the aggregations in the two
outer queries, we can then count (or sum up, respectively) the number of points that have been
reassigned.
A caveat during testing whether a point has been reassigned is that centroid IDs are not constant

over iterations: closest_column returns a column index in the matrix centroids, and this matrix
is the result of the matrix_agg aggregate—hence, the order of the columns is non-deterministic. We
therefore cannot directly compare a column index from iteration i to a column index from iteration
i− 1, but instead need to translate the “new” index into an “old” index first. In order to do that,
we extend the outermost query and also build up an array old_centroid_ids, where position i will
contain the column index that centroid i had in the previous iteration. A crucial assumption �
on the DBMS backend here is that the two aggregates array_agg and matrix_agg see
all tuples in the same order. Putting everything together, the query becomes:

1: SELECT
2: matrix_agg(_centroid), -- New value for: centroids
3: array_agg(_new_centroid_id), -- New value for: old_centroid_ids
4: sum(_objective_fn), -- New value for: objective_fn
5: CAST(sum(_num_reassigned) AS DOUBLE PRECISION) / sum(_num_points)
6: -- New value for: frac_reassigned
7: FROM (
8: SELECT
9: (_new_centroid).column_id AS _new_centroid_id,

10: sum((_new_centroid).distance) AS _objective_fn,
11: count(*) AS _num_points,
12: sum(
13: CAST(
14: old_centroid_ids[(_new_centroid).column_id + 1] != _old_centroid_id
15: AS INTEGER
16: )
17: ) AS _num_reassigned,
18: $agg_centroid(_point) AS _centroid
19: FROM (
20: SELECT
21: $expr_point AS _point,
22: closest_column(
23: centroids,
24: $expr_point,
25: fn_dist
26: ) AS _new_centroid,
27: (closest_column(
28: old_centroids,
29: $expr_point,
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30: fn_dist
31: )).column_id AS _old_centroid_id
32: FROM $rel_source
33: ) AS _points_with_assignments
34: GROUP BY (_new_centroid).column_id
35: ) AS _new_centroids

Finally, line 5 is simply implemented by calling function kmeanspp_seeding. For a slight perfor-
mance benefit, this function call should be guarded by a check if the number of centroids is lower
than k.
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8 Convex Programming Framework
Author Xixuan (Aaron) Feng

History v0.5 Initial revision

The nature of MADlib drives itself to support many different kinds of data modeling modules,
such as logistic regression, support vector machine, matrix factorization, etc. However, keeping
up with the state of the art and experimenting with individual data modeling modules require
significant development and quality-assurance effort. Therefore, to lower the bar of adding and
maintaining new modules, it is crucial to identify the invariants among many important modules,
in turn, abstract and encapsulate them as reusable components.
Bismarck [29] is such a unified framework that links many useful statistical modeling modules and

the relational DBMS, by introducing a well-studied formulation, convex programming, in between.
Incremental Gradient Descent (IGD) has also been shown as a very effective algorithm to solve
convex programs in the relational DBMS environment. But it is natural that IGD does not always
fit the need of MADlib users who are applying convex statistical modeling to various domains.
Driven by this, convex programming framework in MADlib also implements other algorithms that
solves convex programs, such as Newton’s method and conjugate gradient methods.

8.1 Introduction
This section is to first explain, formally, the type of problems that we consider in the MADlib
convex programming framework, and then give a few example modules.

8.1.1 Formulation

We support numerical optimization problems with an objective function that is a sum of many
component functions [7], such as

min
w∈RN

M∑
m=1

fzm(w),

where zm ∈ O,m = 1, ...,M , are observations, and fzm : RN → R are convex functions. For
simplicity, let z1:M denote {zm ∈ O|m = 1, ...,M}. Note: given z1:M , let F (w) =

∑M
m=1 fzm(w),

and F : RN → R is also convex.

8.1.2 Examples

Many popular models can be formulated in the above form, with fzm being properly specified.

Logistic Regression. The component function is given by

f(xm,ym)(w) = log(1 + e−ymw
T xm),

where xm ∈ RN are values of independent variables, and ym ∈ {−1, 1} are values of the dependent
variable, m = 1, ...,M .
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Linear SVM with hinge loss. The component function is given by

f(xm,ym)(w) = max(0, 1− ymwTxm),

where xm ∈ RN are values of features, and ym ∈ {−1, 1} are values of the label, m = 1, ...,M .
Bertsekas [7] gives many other examples across application domains.

8.2 Algorithms
Gradient Descent. A most-frequently-mentioned algorithm that solves convex programs is gra-
dient descent. This is an iterative algorithm and the iteration is given by

wk+1 = wk − αk∇F (wk),

where, given z1:M , F (w) =
∑M
m=1 fzm(w), and αk is a positive scalar, called stepsize (or step

length). Gradient descent algorithm is simple but usually recognized as a slow algorithm with
linear convergence rate, while other algorithms like conjugate gradient methods and Newton’s
method has super-linear convergence rates [55].

Line Search: A Class of Algorithms. Convex programming has been well studied in the past
few decades, and two main classes of algorithms are widely considered: line search and trust region
([55], section 2.2). Because line search is more commonly deployed and discussed, we focus on line
search in MADlib, although some of the algorithms we discuss in this section can also easily be
formulated as trust region strategy. All algorithms of line search strategies have the iteration given
by

wk+1 = wk + αkpk,

where pk ∈ RN is search direction, and stepsize αk [55]. Specifiedly, for gradient descent, pk is the
steepest descent direction −∇

∑M
m=1 fzm(wk).

8.2.1 Formal Description of Line Search
Algorithm line-search(z1:M )
Input: Observation set z1:M ,

convergence criterion Convergence(),
start strategy Start(),
initialization strategy Initialization(),
transition strategy Transition(),
finalization strategy Finalization()

Output: Coefficients w ∈ RN
Initialization/Precondition: iteration = 0, k = 0
1: wnew ← Start(z1:M )
2: repeat
3: wold ← wnew
4: state ← Initialization(wnew)
5: for m ∈ 1..M do . Single entry in the observation set
6: state ← Transition(state, zm) . Usually computing derivative
7: wnew ← Finalization(state)
8: until Convergence(wold, wnew, iteration)
9: return wnew
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Programming Model. We above give the algorithm of generic line search strategy, in the fashion
of the selected programming model supported by MADlib (mainly user-defined aggregate).

Parallelism. The outer loop is inherently sequential. We require the inner loop is data-parallel.
Simple component-wise addition or model averaging [26] are used to merge two states. A merge
function is not explicitly added to the pseudocode for simplicity. A separate discussion will be
made when necessary.

Convergence criterion. Usually, following conditions are combined by AND, OR, or NOT.

i) The change in the objective drops below a given threshold (E.g., negative log-likelihood,
root-mean-square error).

ii) The value of the objective matches some pre-computed value.

iii) The maximum number of iterations has been reached.

iv) There could be more.

In MADlib implementation, the computation of objective is paired up with line-search to share
data I/O.

Start strategy. In most cases, zeros are used unless otherwise specified.

Transition and finalization strategies. The coefficients update code (wk+1 ← wk+αkpk) is put
into either Transition() or Finalization(). These two functions contain most of the computation
logic, for computing the search direction pk. We discuss details of individual algorithms in the
following sections. For simplicity, global iterator k is read and updated in place by these functions
without specifed as an additional argument.

8.2.2 Incremental Gradient Descent (IGD)

A main challenge arises when we are handling large amount of data,M � 1, where the computation
of ∇(

∑M
m=1 fzm) requires a whole pass of the observation data which is usually expensive. What

distinguishes IGD from other algorithms is that it approximates ∇(
∑M
m=1 fzm) =

∑M
m=1(∇fzm) by

the gradient of a single component function ∇fzm 1. The reflection of this to the pseudocode makes
the coefficients update code (wk+1 ← wk + αkpk) in Transition() instead of in Finalization().

8.2.2.1 Initialization Strategy
Algorithm initialization-igd(w)
Input: Coefficients w ∈ RN
Output: Transition state state
1: state.wk ← w
2: return state

1zm is usually selected in a stochastic fashion. Therefore, IGD is also referred to as stochastic gradient descent. The
convergence and convergence rate of IGD are well developed [7], and IGD is often considered to be very effective
with M being very large [11].
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8.2.2.2 Transition Strategy
Algorithm transition-igd(state, zm)
Input: Transition state state,

observation entry zm,
stepsize α ∈ R+,
gradient function Gradient()

Output: Transition state state
1: pk ← −Gradient(state.wk, zm) . Previously mentioned as pk = −∇fzm
2: state.wk+1 ← state.wk + αpk
3: k ← k + 1 . In-place update of the global iterator
4: return state

Stepsize. In MADlib, we support only constant stepsize for simplicity. Although IGD with
constant stepsizes does not even have convergence guarantee [7], but it works reasonably well in
practice so far [29] with some proper tuning. Commonly-used algorithms to tune stepsize ([8],
appendix C) are mostly heuristics and do not have strong guarantees on convergence rate. More
importantly, these algorithms require many evaluations of the objective function, which is usually
very costly in use cases of MADlib.

Gradient function. A function where IGD accepts computational logic of specified modules. In
MADlib convex programming framework, currently, there is no support of objective functions that
does not have gradient or subgradient. Those objective functions that is not linearly separable is
not currently supported by the convex programming framework, such as Cox proportional hazards
models [22].

8.2.2.3 Finalization Strategy
Algorithm finalization-igd(state)
Input: Transition state state
Output: Coefficients w ∈ RN

1: return state.wk . Trivially return wk

8.2.3 Conjugate Gradient Methods

Conjugate gradient methods that solve convex programs are usually refered to as nonlinear conju-
gate gradient mthods. The key difference between conjugate gradient methods and gradient descent
is that conjuagte gradient methods perform adjustment of the search direction pk by considering
gradient directions of previous iterations in some intriguing way. We skip the formal desciption of
conjugate gradient methods that can be found in the references (such as Nocedal & Wright [55],
section 5.2).

8.2.3.1 Initialization Strategy
Algorithm initialization-cg(w)
Input: Coefficients w ∈ RN ,

gradient value g ∈ RN (i.e.,
∑M
m=1∇fzm(wk−1)),

previous search direction p ∈ RN

Output: Transition state state
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1: state.pk−1 ← p
2: state.gk−1 ← g
3: state.wk ← w
4: state.gk ← 0
5: return state

8.2.3.2 Transition Strategy
Algorithm transition-cg(state, zm)
Input: Transition state state,

observation entry zm,
gradient function Gradient()

Output: Transition state state
1: state.gk ← state.gk + Gradient(state.wk, zm)
2: return state

8.2.3.3 Finalization Strategy
Algorithm finalization-cg(state)
Input: Transition state state,

stepsize α ∈ R+,
update parameter strategy Beta()

Output: Coefficients w ∈ RN ,
gradient value g ∈ RN (i.e.,

∑M
m=1∇fzm(wk−1)),

previous search direction p ∈ RN

1: if k = 0 then
2: state.pk ← −state.gk
3: else
4: βk ← Beta(state)
5: pk ← −state.gk + βkpk−1

6: state.wk+1 ← state.wk + αpk
7: k ← k + 1
8: p← pk−1 . Implicitly returning
9: g ← state.gk−1 . Implicitly returning again

10: return state.wk

Update parameter strategy. For cases that F is strongly convex quadratic (e.g., ordinary least
squares), βk can be computed in closed form, having pk be in conjugate direction of p0, ..., pk−1.
For more general objective functions, many different choices of update parameter are proposed [37,
55], such as

βFRk = ‖gk‖2

‖gk−1‖2
,

βHSk = gTk (gk − gk−1)
pTk−1(gk − gk−1)

,

βPRk = gTk (gk − gk−1)
‖gk−1‖2

,
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βDYk = ‖gk‖2

pTk−1(gk − gk−1)
,

where gk =
∑M
m=1∇fzm(wk), and pk = −gk + βkpk−1. We choose the strategy proposed by Dai

and Yuan due to lack of mechanism for stepsize tuning in MADlib, which is required for other
alternatives to guarantee convergence rate. (See Theorem 4.1 in Hager and Zhang [37]). In fact,
lack of sufficient stepsize tuning for each iteration individually could make conjugate gradient
methods have similar or even worse convergence rate than gradient descent. This should be fixed
in the future.

8.2.4 Newton’s Method

Newton’s method uses a search direction other than the steepest descent direction – Newton di-
rection. The Newton direction is very effective in the cases that the objective function is not too
different from a quadratic approximation, and it gives quadratic convergence rate by considering
Taylor’s theorem. Formally, the Newton direction is given by

pk = −(∇2F (wk))−1∇F (wk),

where, given z1:M , F (w) =
∑M
m=1 fzm(w), and Hk = ∇2F (wk) is called the Hessian matrix.

8.2.4.1 Initialization Strategy
Algorithm initialization-newton(w)
Input: Coefficients w ∈ RN
Output: Transition state state
1: state.wk ← w
2: state.gk ← 0
3: state.Hk ← 0
4: return state

8.2.4.2 Transition Strategy
Algorithm transition-newton(state, zm)
Input: Transition state state,

observation entry zm,
gradient function Gradient(),
Hessian matrix function Hessian()

Output: Transition state state
1: state.gk ← state.gk + Gradient(state.wk, zm)
2: state.Hk ← state.Hk + Hessian(state.wk, zm)
3: return state

8.2.4.3 Finalization Strategy
Algorithm finalization-newton(state)
Input: Transition state state
Output: Coefficients w ∈ RN

1: pk ← −(state.Hk)−1state.gk
2: state.wk+1 ← state.wk + pk
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3: k ← k + 1
4: return state.wk

Hessian Matrix Function. A function where Newton’s method accepts another computational
logic of specified modules. See also gradient function.

Inverse of the Hessian Matrix. The inverse of Hessian matrix may not always exist if the
Hessian is not guaranteed to be positive definite (∇2F = 0 when F is linear). We currently only
support Newton’s method for objetcive functions that is strongly convex. This may sometimes
mean an objective function that is not globally strongly convex but Newton’s method works well
with a good starting point as long as the objective function is strongly convex in a convex set that
contains the given starting point and the minimum. A few techniques that modify the Newton’s
method to adapt objective functions that are not strongly convex can be found in the references
[8, 55].

Feed a Good Start Point. Since Newton’s method is sensitive to the start point w0, we provide
a start strategy Start() to accept a start point that may not be zeros. It may come from results of
other algorithms, e.g., IGD.

8.3 Implemented Machine Learning Algorithms
We have implemented several machine learning algorithms under the framework of convex opti-
mization.

8.3.1 Linear Ridge Regression

Ridge regression is the most commonly used method of regularization of ill-posed problems. Math-
ematically, it seeks to minimize

Q (w, w0;λ) ≡ min
w,w0

[
1

2N

N∑
i=1

(yi − w0 −w · xi)2 + λ

2 ‖w‖
2
2

]
, (8.3.1)

for a given value of λ, where w and w0 are the fitting coefficients, and λ is a non-negative regular-
ization parameter. w is a vector in d dimensional space, and

‖w‖22 =
d∑
j=1

w2
j = wTw . (8.3.2)

When λ = 0, Q is the mean squared error of the fitting.
The intercept term w0 is not regularized, because this term is fully decided by the mean values

of yi and xi and the values of w, and does not affect the model’s complexity.
Q (w, w0;λ) is a quadratic function of w and w0, and thus can be solved analytically

wridge =
(
λId +XTX

)−1
XTy . (8.3.3)

By using the available Newton method (Sec. 6.2.4), the above quantity can be easily calculated
from one single step of the Newton method.
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Many packages for Ridge regularization actually regularize the fitting coefficients not for the
fitting model for the original data but for the data that has be scaled. MADlib also provides this
option. When the normalization parameter is set to be True, which is by default False, the data
will be first converted to the following before applying the Ridge regularization.

x′i ←
xi − 〈xi〉
〈(xi − 〈xi〉)2〉

, (8.3.4)

yi ← yi − 〈yi〉 , (8.3.5)

where 〈·〉 =
∑N
i=1 ·/N .

Note that Ridge regressions for scaled data and un-scaled data are not equivalent.
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9 Low-rank Matrix Factorization

Author Xixuan (Aaron) Feng (version 0.5 only)

History v0.5 Initial revision of design document, Implementation based on incre-
mental gradient descent

v0.1 Initial revision (somewhat misleadingly called SVD matrix factoriza-
tion at that time)

This module implements "factor model" for representing an incomplete matrix using a low-rank
approximation [67]. Mathematically, this model seeks to find matrices U and V (also referred as
factors) that, for any given incomplete matrix A, minimizes:

‖A−UV T ‖2

subject to rank(UV T ) ≤ r, where ‖ · ‖2 denotes the Frobenius norm. Let A be a m × n matrix,
then U will be m× r and V will be n× r, in dimension, and 1 ≤ r � min(m,n). This model is not
intended to do the full decomposition, or to be used as part of inverse procedure. This model has
been widely used in recommendation systems (e.g., Netflix [6]) and feature selection (e.g., image
processing [77]).

9.1 Incremental Gradient Descent

9.1.1 Solving as a Convex Program

Recent work [19, 61] has demonstrated that the low-rank matrix factorization can be solved as
a convex programming problem. This body of work enables us to solve the problem by using
gradient-based line search algorithms. Among many of these algorithms, incremental gradient
descent algorithm is a popular choice, especially for really large input matrices [29, 33].

9.1.2 Formal Description
Algorithm lmf-igd(r,A, α)
Input: Sparse matrix A,

step size α,
low-rank constraint r,
convergence criterion Convergence,
random factor generator GenerateFactor

Output: Factors U (m× r) and V (n× r)
Initialization/Precondition: iteration = 0
1: U ← GenerateFactor(m, r)
2: V ← GenerateFactor(n, r)
3: repeat
4: iteration ← iteration + 1
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5: Uold ← U
6: Vold ← V
7: for (i, j, y) ∈ A do . Single entry in sparse matrix A
8: e← Ui · Vj − y
9: temp ← Ui − αeVj
10: Vj ← Vj − αeUi . In-place update of V
11: Ui ← temp . In-place update of U
12: until Convergence(Uold, Vold, U, V, iteration)

Runtime O(NA(m + n)r + mnr) for one iteration, where NA is the number of nonzero elements
in A.

Space Store the temp, an r-floating-point vector.

Parallelism The outer loop is inherently sequential. The inner loop is data-parallel and model
averaging [26] is used.

Factor initialization The author of this document is not aware that significant differences are
caused if random factors are initialized by different distributions. But zero values should be
avoided. And entries in factors should not be initialized as the same value; otherwise, factors
will always be rank 1.

Convergence criterion Usually, following conditions are combined by AND, OR, or NOT.
i) The change in the objective drops below a given threshold (E.g., RMSE).
ii) The value of the objective matches some pre-computed value.
iii) The maximum number of iterations has been reached.
iv) There could be more.
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10 Latent Dirichlet Allocation (LDA)

Author Shengwen Yang (version 0.6 only)

History v0.6 Initial revision of design document, complete rewrite of module, stan-
dard parallel implementation (support for local model update tuple
by tuple and global model update iteration by iteration)

v0.1 Initial version (An approximated implementation which has memory
problem for big datasets)

LDA is a very popular technique for topic modeling. This module implements a parallel Gibbs
sampling algorithm for LDA inference.

10.1 Overview of LDA
LDA[9] is a very popular technique for discovering the main themes or topics from a large collection
of unstructured documents and has been widely applied to various fields, including text mining,
computer vision, finance, bioinformatics, cognitive science, music, and social sciences.
With LDA, a document can be represented as a random mixture of latent topics, where each

topic can be characterized by a probability distribution over a vocabulary of words. Given a large
text corpus, LDA will be able to infer a set of latent topics from the corpus, each represented with
a multinomial distribution over words, denoted as P (w|z), and infer the topic distribution for each
document, represented as a multinomial distribution over topics, denoted as P (z|d).

Several methods have been proposed for the inference of LDA, including variational Bayesian,
expectation propagation, and Gibbs sampling[35]. Among of these methods, Gibbs sampling is the
most widely used one because it is simple, fast, and has very few adjustable parameters. Besides,
Gibbs sampling is easy to parallelize and easy to scale up, which allows us to utilize a cluster of
machines to deal with very big datasets.

10.2 Gibbs Sampling for LDA

10.2.1 Overview

Althouth the derivation of Gibbs sampling for LDA is complicated, the results are very simple.
The following equation tells us how to sample a new topic for a word in a corpus:

P (zi = k|z−i,w) ∝
nwz

(wi)
−i,k + β

nz−i,k +Wβ
× (ndz(di)

−i,k + α) (10.2.1)

where:

• i - index of word in the corpus

• di - docid of the ith word
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• wi - wordid of the ith word

• k - the kth topic, where 1 <= k <= T , and T is the number of topics

• zi - topic assignment for the ith word

• z−i - topic assignments for other words excluding the ith word

• w - all words in the corpus

• ndz - per-document topic counts

• nwz - per-word topic counts

• nz - corpus-level topic counts

According to this equation, we can update the topic assignment to each word sequnetially. This
process can be iterated enough times until the conditional distribution reachs a stable state.

10.2.2 Parallization

The parallization of the above algirhtm is very straightforward. The basic idea is to distribute a
large set of documents to a cluster of segment nodes and allow each segment node to do Gibbs
sampling on a subset of documents locally. Note that at the end of each iteration, the local models
generated on each segment node will be merged to generate a global model, which will be distributed
to each segment node at the begining of next iteration.
Refer to [74] for a similar parallel implementation based on MPI and MapReduce.

10.2.3 Formal Description
Algorithm gibbs-lda(D,T, α, β)
Input:

Dataset D,
topic number T ,
prior on per-document topic distribution α,
prior on per-word topic distribution β

Output:
Per-document topic distribution P (z|d),
per-word topic distribution P (z|w)

1: ndz ← 0
2: nwz ← 0
3: nz ← 0
4: for d ∈ D do
5: for w ∈Wd do
6: z ← random(T )
7: ndz[d, z]← ndz[d, z] + 1
8: nwz[w, z]← nwz[w, z] + 1
9: nz[z]← nz[z] + 1
10: Z[d,w]← z

11: repeat
12: for d ∈ D do
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13: for w ∈Wd do
14: zold ← Z[d,w]
15: znew ← gibbs-sample(zold, ndz, nwz[w], nz, α, β)
16: Z[d,w]← znew
17: ndz[d, zold]← ndz[d, zold]− 1
18: nwz[w, zold]← nwz[w, zold]− 1
19: nz[zold]← nz[zold]− 1
20: ndz[d, znew]← ndz[d, znew] + 1
21: nwz[w, znew]← nwz[w, znew] + 1
22: nz[znew]← nz[znew] + 1
23: until Stop condition is satisfied
24: P (z|d)← normalize(ndz, α)
25: P (z|w)← normalize(nwz, β)

Parallelism The inner loop is sequential. The outer loop is data-parallel and model averaging is
used.

10.2.4 Implementation as User-Defined Function

Algorithmgibbs-lda is implemented as the user-defined function lda_train.

Name Description Type

In data_table Table containing the training dataset Relation

In voc_size Size of vocabulary Integer

In topic_num Number of topics Integer

In iter_num Number of iterations Integer

In alpha Prior on per-document topic distribution Double

In beta Prior on per-word topic distribution Double

Out model_table Table containing the model information Relation

Out output_data_table Table containing the per-document topic counts and
topic assignments

Relation

Internally, two work tables are used alternately in the iterative Gibbs sampling process, one as
input, another as output. The key part of an iteration is implemented essentially using the following
SQL:

1: INSERT INTO work_table_out
2: SELECT
3: distid,
4: docid,
5: wordcount,
6: words,
7: counts,
8: madlib.__newplda_gibbs_sample(
9: words,

10: counts,
11: doc_topic,
12: model,
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13: alpha,
14: beta,
15: voc_size,
16: topic_num)
17: FROM
18: (
19: SELECT
20: distid,
21: docid,
22: wordcount,
23: words,
24: counts,
25: doc_topic,
26: model
27: FROM
28: (
29: SELECT
30: madlib.__newplda_count_topic_agg(
31: words,
32: counts,
33: doc_topic[topic_num + 1:array_upper(doc_topic, 1)]
34: AS topic_assignment,
35: voc_size,
36: topic_num) model
37: FROM
38: work_table_in
39: ) t1
40: JOIN
41: work_table_in
42: ) t2

Note that within the madlib.__newplda_gibbs_sample function, the model parameter will be
read in the first invocation and stored in the memory. In the incoming invocations within the same
query, the parameter will be ignored. In this way, the model can be updated by an invocation and
the updated model can be transferred to the next invocation.
The above SQL can be further rewritten to eliminate the data redundancy and reduce the over-

head of joining operation, and thus improve the overall performance. This is very useful when the
product of voc_size× topic_num is very large. See below for the rewritten SQL:

1: INSERT INTO work_table_out
2: SELECT
3: distid,
4: docid,
5: wordcount,
6: words,
7: counts,
8: madlib.__newplda_gibbs_sample(
9: words,

10: counts,
11: doc_topic,
12: model,
13: alpha,
14: beta,
15: voc_size,
16: topic_num)
17: FROM
18: (
19: SELECT
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20: dcz.distid,
21: dcz.docid,
22: dcz.wordcount,
23: dcz.words,
24: dcz.counts,
25: dcz.doc_topic,
26: chunk.model
27: FROM
28: (
29: SELECT
30: distid, docid, model
31: FROM
32: (
33: SELECT
34: madlib.__newplda_count_topic_agg(
35: words,
36: counts,
37: doc_topic[topic_num + 1:array_upper(doc_topic, 1)]
38: AS topic_assignment,
39: voc_size,
40: topic_num) model
41: FROM
42: work_table_in
43: ) t1,
44: (
45: SELECT
46: distid,
47: min(docid) docid
48: FROM
49: work_table_in
50: GROUP BY distid
51: ) t2 -- One row per-segment
52: ) chunk -- Ideally only one row per-segment
53: RIGHT JOIN work_table_in dcz
54: ON (dcz.distid = chunk.distid AND dcz.docid = chunk.docid)
55: ORDER BY distid, docid -- Local data manipulation, no data redistribution
56: ) joined -- Ideally only one row per-segment has the fully joined data
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11 Linear-chain Conditional Random Field

Conditional random field(CRF) [46] is a type of discriminative undirected probabilistic graphical
model. Linear-chain CRFs are special CRFs which assume that the next state depends only on
the current state. Linear-chain CRFs achieve state of the art accuracy in some real world natural
language processing tasks such as part of inforamtion extraction[21], speech tagging(POS) and
named entity resolution(NER).

11.1 Linear-chain CRF Learning

11.1.1 Mathematical Notations

• p(Y |X): conditional probability distributions of label sequence Y given input sequence X.

• M : total number of unique features.

• I: the position of last token in a sentence.

• N : number of sentences in the training data set.

• λ: the coefficients (feature weights).

• `λ: log-likelihood summed over all training sentences.

• ∇`λ: gradient vector summed over all training sentences.

• `′λ: adjusted log-likelihood to avoid overfitting using spherical Gaussian weight prior.

• ∇`′λ: adjusted gradient vector to avoid overfitting using spherical Gaussian weight prior.

11.1.2 Formulation

A linear-chain CRF [64] is a distribution

p(Y |X) = exp
∑M
m=1

∑I
i=0 λmfm(yi, yi−1, xi)
Z(X) ,

where Z(X) is an instance specific normalizer

Z(X) =
∑
y

exp
M∑
m=1

I∑
i=0

λmfm(yi, yi−1, xi).

Train a CRF by maximizing the log-likelihood of a given training set T = {(x(k),y(k))}Nk=1. Seek
the zero of the gradient.

`λ =
∑
k

log pλ(y(k)|x(k)) =
∑
k

[λF (y(k),x(k))− logZλ(x(k))]
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11.1 Linear-chain CRF Learning

∇`λ =
∑
k

[F (y(k),x(k))− Epλ(Y |x(k))F (Y,x(k))]

To avoid overfitting, we penalize the likelihood with a spherical Gaussian weight prior:

`′λ =
∑
k

[λF (y(k),x(k))− logZλ(x(k))]− ‖λ‖
2

2σ2

∇`′λ =
∑
k

[F (y(k),x(k))− Epλ(Y |x(k))F (Y,x(k))]− λ

σ2

Note:We hard code σ as 100 in the implementation which follows other CRF packages in the
literature.

11.1.3 Forward-backward Algorithm

Epλ(Y |x)F (Y, x) is computed using a variant of the forward-backward algorithm:

Epλ(Y |x)F (Y, x) =
∑
y

pλ(y|x)F (y, x) =
∑
i

αi−1(fi ∗Mi)βTi
Zλ(x)

Zλ(x) = αI .1T

where αi and βi the forward and backward state cost vectors defined by

αi =
{
αi−1Mi, 0 < i <= n

1, i = 0
, βTi =

{
Mi+1λ

T
i+1, 1 <= i < I

1, i = n

11.1.4 L-BFGS Convex Solver

The limited-memory BFGS(L-BFGS) [54] is the limited memory variation of the Broyden-Fletcher-
Goldfarb-Shanno(BFGS) algorithm which is the state of art of large scale non constraint convex
optimization method. We translate the in-memory Java implementation to C++ in-database im-
plementation using Eigen support. Eigen vector and Eigen matrix are used instead of the plain one
dimentional and two dimentional arrays. In the Java in- memory implementation, it defines many
static variables defined and shared between the interations. However, in the MADlib implementa-
tion, we define these variables in the state object. Before each iteration of L-BFGS optimization,
we need to initialize the L-BFGS with the current state object. At the end of each iteration, we
need to dump the updated variables to the database state for next iteration.

11.1.5 Parallel CRF Training
Algorithm CRF training(z1:M )
Input: Observation set z1:M ,

convergence criterion Convergence(),
start strategy Start(),
initialization strategy Initialization(),
transition strategy Transition(),
finalization strategy Finalization()

Output: Coefficients w ∈ RN
Initialization/Precondition: iteration = 0, diag = 1
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1: wnew ← Start(z1:M )
2: repeat
3: wold ← wnew
4: state ← Initialization(wnew)
5: for m ∈ 1..M do . Single entry in the observation set
6: state ← Transition(state, zm) . Computing gradient and log-likelihood.
7: wnew ← Finalization(state) . Mainly invoke L-BFGS convex solver
8: until Convergence(wnew, gnew, iteration)
9: return wnew

Programming Model. We provide above the algorithm of parallel CRF training strategy, in the
fashion of the selected programming model supported by MADlib (mainly user-defined aggregate).

Parallelism. The outer loop is inherently sequential over multiple iterations. The iteration n+ 1
takes the output of iteration n as input, so on so forth until the stop criterion is satisfied. The inner
loop which calculates the gradient and log-likelihood for each document is data-parallel. Simple
model averaging are used to merge two states. A merge function is not explicitly added to the
pseudocode for simplicity. The finalization function invokes the L-BFGS convex solver to get a
new solution. L-BFGS is sequential, but very fast. Experiments show that the speed-up ration
approaches the number of segments configured in the Greenplum database.

Convergence criterion. Usually, the following conditions are combined by AND, OR, or NOT.

i) The norm of gradient divided by the norm of coefficient drops below a given threshold.

ii) The maximum number of iterations is reached.

iii) There could be more.

Start strategy. In most cases, zeros are used unless otherwise specified.

Transition strategies. This function contains the logic of computing the gradient and log-
likelihood for each tuple using the forward-backward algorithm. The algorithms will be discussed
in the following sections.

Algorithm transition-lbfgs(state, zm)
Input: Transition state state,

observation entry zm,
gradient function Gradient()

Output: Transition state state
1: {state.g, state.loglikelihood} ← Gradient(state, zm) . using forward-backward algorithm to

calculate gradient and loglikelihood
2: state.num_rows← state.num_rows+ 1
3: return state
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Merge strategies. The merge function simply sums the gradient and log-likelihood over all
training documents

Algorithm merge-lbfgs(state1 , state2 )
Input: Transition state state1 ,

Transition state state2
Output: Transition state statenew

1: statenew .g ← state1 .g + state2 .g
2: statenew .loglikelihood← state1 .loglikelihood+ state2 .loglikelihood
3: return statenew

Finalization strategy. The finalization function invokes the L-BFGS convex solver to get a new
coefficent vector.

Algorithm finalization-lbfgs(state)
Input: Transition state state,

LBFGS lbfgs()
Output: Transition state state
1: {state.g, state.loglikelihood} ← penalty(state.g, state.loglikelihood) . To avoid overfitting,

add penalization
2: {state.g, state.loglikelihood} ← −{state.g, state.loglikelihood} . negation for maximization
3: LBFGS instance(state) . initialize the L-BFGS instance with previous state
4: instance.lbfgs() . invoke the L-BFGS convex solver
5: instance.save_state(state) . save updated variables to the state for next iteration
6: return state

Feeding with current solution, gradient, log-likelihood, etc., the L-BFGS will output a new so-
lution. To avoid overfitting, a penalization function is needed. We choose to penalize the log-
likelihood with a spherical Gaussian weight prior. Also, L-BFGS is to maximum objective, so
we need to negate the gradient vector and log-likelihood to fit our needs in order minimize the
log-likehood.

11.2 Linear-chain CRF Applications
Linear-chain CRF can be used in various applications such as part of speech tagging and named
entity resolution. All the following sections assume that the application is part of speech tagging.
It can be fitted to named entity resolution with minimal effort.

11.2.1 Part of Speech Tagging

Part-of-speech tagging, also called grammatical tagging or word-category disambiguation [24], is
the process of assigning a part of speech to each word in a sentence. POS has been widely used in
information retrieval and text to speech. There are two distinct methods for POS task: rule-based
and stochastic. In rule-based method, large collection of rules are defined to indentify the tag.
Stochastic method is based on probabilistic graphic models such as hidden markov models and
conditional random fields. In practice, conditional random fields are approved to achieve the state
of art accuracy.
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11.2.2 Tag Set

There are various tag set used in the literature. The Pennsylvania Treebank tag-set [51] is the
commonly used tag set and contains 45 tags. The following table shows part of tags in the tag set.

Table 11.1: Pen Treebank III Tag Set

Tag Description Example Tag Description Example
CC Coordin,Conjunction and,but,or SYM Symbol +,%,&
CD Cardinal number one,two,three TO ’to’ to
DT Determiner a,the UH Interjection ah,oops
EX Existential there VB Verb,base form eat
... ... ... ... ... ...
RBR Adverb,comparative faster . Sentence-final (.!?)
RBS Adverb,superlative fastest : Mid-sentence punc (:;...-)
RP Particle up,off

11.2.3 Regular Expression Table

Regex feature captures the relationship between the morphology of a token and it’s corresponding
tag. For example, a token ending with ’s’ is mostly likely to be a plural noun whereas a token
ending with ’ly’ is more likely to be an adverb. One can define his/her own regular expressions to
capture the intrinsic characteristics of the given training data.

Table 11.2: Regular expression table
pattern name pattern name
∧[A− Z][a− z] + $ InitCapital ∧[A− Z] + $ isAllCapital
∧. ∗ [0− 9] + . ∗ $ containsDigit ∧.+ [.]$ endsWithDot
∧.+ [, ]$ endsWithComma ∧.+ er$ endsWithEr
∧.+ est$ endsWithEst ∧.+ ed$ endsWithEd
∧.+ s$ endsWithS ∧.+ ing$ endsWithIng
∧.+ ly$ endsWithly ∧.+−.+ $ isDashSeparatedWords
∧. ∗@. ∗ $ isEmailId

11.3 Feature Extraction
The Feature Extraction module provides functionality for basic text-analysis tasks such as part-of-
speech (POS) tagging and named-entity resolution. At present, six feature types are implemented.

• Edge Feature: transition feature that encodes the transition feature weight from current label
to next label.

• Start Feature: fired when the current token is the first token in a sentence.

• End Feature: fired when the current token is the last token in a sentence.
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• Word Feature: fired when the current token is observed in the trained dictionary.

• Unknown Feature: fired when the current token is not observed in the trained dictionary for
at least certain times.

• Regex Feature: fired when the current token can be matched by the regular expression.

Advantages of extracting features using SQL statements:

? Decoupling the feature extraction and other code.

? Compared with procedure language, SQL is much more easier to understand.

? Storing all the features in tables avoids recomputing of features over iterations. It also boosts
the performance.

? SQL is naivelly paralleled.

11.3.1 Column Names Convention and Table Schema

11.3.1.1 Column Names Convention

The following column names are commonly used in the tables of the following sections.

• doc_id: Unique integer indentifier of a document.

• start_pos: Position of the token in the document starting from 0.

• seg_text: Text token itself.

• prev_label: Label of previous token.

• label: Label of current token.

• max_pos: End positon of the document.

• weight: Feature weight associated with certain feature

• f_index: Unique integer identifier of a feature

• f_name: Feature name.

11.3.1.2 Training and Testing Data Schema

The text data has to been tokenized before it can be stored in the database. One of the commonly
used tokenization program for part-of-speech tagging is the Treebank tokenization script. The
following table dipicts how the training/testing data is stored in the database table.

85



11.3 Feature Extraction

Table 11.3: Training or Testing data
start_pos doc_id seg_text label start_pos doc_id seg_text label
0 1 ’confidence’ 11 1 1 ’in’ 5
2 1 ’the’ 2 3 1 ’pound’ 11
4 1 ’is’ 31 5 1 ’widely’ 19
6 1 ’expected’ 29 7 1 ’to’ 24
8 1 ’take’ 26 9 1 ’another’ 2
10 1 ’sharp’ 6 11 1 ’dive’ 11
12 1 ’if’ 5 13 1 ’trade’ 11
14 1 ’figures’ 12 15 1 ’for’ 5
16 1 ’september’ 13 17 1 ’,’ 42
18 1 ’due’ 6 19 1 ’for’ 5

11.3.2 Design Challanges and Work-arounds

As far as I know, the MADlib C++ abstraction layer doesn’t support array of self-defined composite
data types or multi-dimentional arrays. But we do have the need of these complex data types in
the implemenation of this module. For example, the viterbi_mtbl table is indeed a two dimentional
arrays. Due to the limitations of current C++ abstraction layer, we have to convert the matrix to
an array and later index the data with M [i ∗ n + j] instead of the normal way M [i][j]. Another
example is the data types to represent the features. A single feature cannot be represented by
a single DOUBLE varialbe but by a unit of struct : [prev_label, label, f_index, start_pos, exist]
But there is no arrays of struct type, we had to represent it with one dimentional array. Also we
have to store the features for a document using array of doubles instead of array of struct.

11.3.3 Training Data Feature Extraction

Given training data, SQLs are writen to extract all the features. It happened that any type of
features mentioned above can be extracted out by one single SQL clause which makes the code
succinct. We illustrate the training data feature extraction by SQL clause examples.

Sample Feature Extraction SQLs for edge features and regex features

• SQL1:

1: SELECT doc2.start_pos, doc2.doc_id, ’E.’, ARRAY[doc1.label, doc2.label]
2: FROM segmenttbl doc1, segmenttbl doc2
3: WHERE doc1.doc_id = doc2.doc_id AND doc1.start_pos+1 = doc2.start_pos

• SQL2:

1: SELECT start_pos, doc_id, ’R_’ || name, ARRAY[-1, label]
2: FROM regextbl, segmenttbl
3: WHERE seg_text ~ pattern

Build the feature dictionary and assign each feature with a unique feature id

• SQL3
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1: INSERT INTO tmp_featureset(f_name, feature)
2: SELECT DISTINCT f_name, feature
3: FROM tmp1_feature;
4: INSERT INTO featureset(f_index, f_name, feature)
5: SELECT nextval(’seq’)-1, f_name, feature
6: FROM tmp_featureset;

Generate sparse_r table

• SQL3

1: INSERT INTO rtbl(start_pos,doc_id,feature)
2: SELECT start_pos, doc_id, array_cat(fset.feature,
3: ARRAY[f_index,start_pos,
4: CASE WHEN tmp1_feature.feature = fset.feature THEN 1
5: ELSE 0 END] )
6: FROM tmp1_feature, featureset fset
7: WHERE tmp1_feature.f_name = fset.f_name AND fset.f_name <> ’E.’;

The final input table schema which contains all the feature data for the crf learning algorithm is
as follows:

doc_id sparse_r dense_m sparse_m

• sparse r feature(single state feature):(prev_label, label, f_index, start_pos, exist)

label Description
prev_label the label of previous token, it is always 0 in r table.
label the label of the single state feature
f_index the index of the feature in the feature table
start_pos the postion of the token(starting from 0)
exist indicate whether the token exists or not in the acutal training data set

• dense m feature: (prev_label, label, f_index, start_pos, exist)
label Description
prev_label the label of previous token.
label the label of current token
f_index the index of the feature in the feature table
start_pos the postion of the token in a sentence(starting from 0)
exist indicate whether the token exists or not in the acutal training data set

• sparse m feature:(f_index, prev_label, label)
label Description
f_index the index of the feature in the feature table
prev_label the label of previous token
label the label of current token

For performance consideraton, we split the m feature to dense_m feature and sparse_m feature
The acutal spare_r table is array union of individal r features ordered by the start positon of
tokens. So the function to compute the gradient vector and log-likelihood can scan the feature
arrays from beginning to end.
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11.3.4 Learned Model

The CRF learning algorithm will generate two tables: feature table and dictionary table Feature
table stores all the features and their corresponding feature weight. The dictionary constains all
the tokens and the number of times they appear in the training data.

Table 11.4: Feature table
f_index f_name prev_label label weight f_index f_name prev_label label weight
0 ’U’ -1 6 2.037 1 ’E.’ 2 11 2.746
2 ’W_exchequer’ -1 13 1.821 3 ’W_is’ -1 31 1.802
4 ’E.’ 11 31 2.469 5 ’W_in’ -1 5 3.252
6 ’E.’ 11 12 1.305 7 ’U’ -1 2 -0.385
8 ’E.’ 31 29 1.958 9 ’U’ -1 29 1.422
10 ’R_endsWithIng’ -1 11 1.061 11 ’W_of’ -1 5 3.652
12 ’S.’ -1 13 1.829 13 ’E.’ 24 26 3.282
14 ’W_helped’ -1 29 1.214 15 ’E.’ 11 24 1.556

Table 11.5: Dictionary table
token total token total token total token total
’freefall’ 1 ’policy’ 2 ’measures’ 1 ’commitment’ 1
’new’ 1 ’speech’ 1 ”’s’ 2 ’reckon’ 1
’underlying’ 1 ’week’ 1 ’prevent’ 1 ’has’ 2
’failure’ 1 ’restated’ 1 ’announce’ 1 ’thursday’ 1
’but’ 1 ’lawson’ 1 ’last’ 1 ’firm’ 1
’exchequer’ 1 ’helped’ 1 ’sterling’ 2 . . . . . .

11.3.5 Testing Data Feature Extraction

This component extracts features from the testing data based on the learned models. It will produce
two factor tables viterbi_mtbl and viterbi_rtbl. The viterbi_mtbl table and a viterbi_rtbl table
are used to calculate the best label sequence for each sentence.

Sample Feature Extraction SQLs

• SQL1: Extracting unique tokens:

1: INSERT INTO segment_hashtbl
2: SELECT DISTINCT seg_text
3: FROM segmenttbl

• SQL2: Summerize over all single state features with respect to specific tokens and labels :

1: INSERT INTO viterbi_rtbl
2: SELECT seg_text, label, SUM(value)
3: FROM rtbl
4: GROUP BY seg_text,label

doc_id viterbi_mtbl viterbi_rtbl
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• viterbi_mtbl table encodes the edge features which are solely dependent on upon current
label and previous y value. The m table has three columns which are prev_label, label, and
value respectively. If the number of labels is n, then the m factor table will have n2 rows.
Each row encodes the transition feature weight value from the previous label to the current
label.
startFeature is considered as a special edge feature which is from the beginning to the first
token. Likewise, endFeature can be considered as a special edge feature which is from the last
token to the very end. So m table encodes the edgeFeature, startFeature, and endFeature. If
the total number of labels in the label space is 45 from 0 to 44, then the m factor array is as
follows:

• viterbi_r table is related to specific tokens. It encodes the single state features, e.g., word-
Feature, RegexFeature for all tokens. The r table is represented as shown in the table.

Table 11.6: viterbi_mtbl table
token 0 1 2 3 ... 43 44
-1 2.1 1.1 1.0 1.1 1.1 2.1 1.1
0 1.1 3.9 1.2 2.1 2.8 1.8 0.8
1 0.7 1.7 2.9 3.8 0.6 3.2 0.2
2 0.2 3.2 3.8 2.9 0.2 0.1 0.2
3 1.2 6.9 7.8 8.0 0.1 1.9 1.7
... ... ... ... ... ... ... ...
44 8.2 1.8 3.7 2.1 7.2 1.3 7.2
45 1.8 7.8 5.6 9.8 2.3 9.4 1.1

Table 11.7: viterbi_rtbl table
token 0 1 2 3 ... 43 44
madlib 0.2 4.1 0.0 2.1 0.1 2.5 1.2
is 1.3 3.0 0.2 3.1 0.8 1.9 0.9
an 0.9 1.1 1.9 3.8 0.7 3.8 0.7
open-source 0.8 0.2 1.8 2.7 0.5 0.8 0.1
library 1.8 1.9 1.8 8.7 0.2 1.8 1.1
... ... ... ... ... ... ... ...

11.4 Linear-chain CRF Inference
The Viterbi algorithm [71] is the popular algorithm to find the top-k most likely labelings of a
document for CRF models. For the tasks in natural language processing domain, it is sufficient to
only generate the best label sequence. We chose to use a SQL clause to drive the inference over all
documents. In Greenplum, Viterbi can be run in parallel over different subsets of the document on
a multi-core machine.
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11.4 Linear-chain CRF Inference

11.4.1 Parallel CRF Inference

The vcrf_top_label is implemented sequentially and each function call will finish labeling of one
document. The inference is paralledl in the level of document. We use a SQL statment to drive
the inference of all documents. So, the CRF inference is naivelly parallel.

1: SELECT doc_id, vcrf_top1_label(mfactors.score, rfactors.score)
2: FROM mfactors,rfactors

11.4.2 Viterbi Inference Algorithm

V (i, y) =
{

maxy′(V (i− 1, y′)) +
∑K
k=1 λkfk(y, y′, xi), if i ≥ 0

0, if i = −1.

11.4.3 Viterbi Inference output

The final inference output will produce the the best label sequence for each document and also the
conditional probability given the observed input sequence.

Table 11.8: Viterbi inference output
doc_id start_pos token label probability
1 0 madlib proper noun, singular 0.6
1 1 is Verb, base form 0.6
1 2 an determiner 0.6
1 2 open-source adjective 0.6
1 4 library noun 0.6
1 5 for preposition 0.6
1 6 scalable adjective 0.6
1 7 in-dababase adverb 0.6
1 8 analytics noun, singular 0.6
1 9 . sentence-final punc 0.6
2 0 it personal pronoun 0.4
2 1 provides verb, base form 0.4
2 2 data-parallel noun 0.4
2 2 . . . . . . 0.4
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12 ARIMA

Authors Mark Wellons

History v0.1 Initial version

12.1 Introduction
An ARIMA model is an auto-regressive integrated moving average model. An ARIMA model is
typically expressed in the form

(1− φ(B))Yt = (1 + θ(B))Zt, (12.1.1)

where B is the backshift operator. The time t is from 1 to N .
ARIMA models involve the following variables:

i) The lag difference Yt, where Yt = (1−B)d(Xt − µ).

ii) The values of the time series Xt.

iii) p, q, and d are the parameters of the ARIMA model. d is the differencing order, p is the order
of the AR operator, and q is the order of the MA operator.

iv) The AR operator φ(B).

v) The MA operator θ(B).

vi) The mean value µ, which is always set to be zero for d > 0 or need to be estimated.

vii) The error terms Zt.

12.1.1 AR & MA Operators

The auto regression operator models the prediction for the next observation as some linear combi-
nation of the previous observations. More formally, an AR operator of order p is defined as

φ(B)Yt = φ1Yt−1 + · · ·+ φpYt−p (12.1.2)

The moving average operator is similar, and it models the prediction for the next observation
as a linear combination of the errors in the previous prediction errors. More formally, the MA
operator of order q is defined as

θ(B)Zt = θ1Zt−1 + · · ·+ θqZt−q. (12.1.3)
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12.2 Solving for the model parameters

12.2.1 Least Squares

We assume that
Pr(Zt) = 1√

2πσ2
e−Z

2
t /2σ2

, t > 0 (12.2.1)

and that Z−q+1 = Z−q+2 = · · · = Z0 = Z1 = · · · = Zp = 0. The initial values of Yt = Xt − µ for
t = −p+ 1,−p+ 2, . . . , 0 can be solved from the following linear equations

φ1Y0 + φ2Y−1 + · · ·+ φpY−p+1 = Y1

φ2Y0 + · · ·+ φpY−p+2 = Y2 − φ1Y1
...

φp−1Y0 + φpY−1 = Yp−1 − φ1Yp−2 − · · · − φp−2Y1

φpY0 = Yp − φ1Yp−1 − · · · − φp−1Y1 (12.2.2)

The likelihood function L for N values of Zt is then

L(φ, θ) =
N∏
t=1

1√
2πσ2

e−Z
2
t /2σ2 (12.2.3)

so the log likelihood function l is

l(φ, θ) =
N∑
t=1

ln
( 1√

2πσ2
e−Z

2
t /2σ2

)

=
N∑
t=1
− ln

(√
2πσ2

)
− Z2

t

2σ2

= −N2 ln
(
2πσ2

)
− 1

2σ2

N∑
t=1

Z2
t . (12.2.4)

Thus, finding the maximum likelihood is equivalent to solving the optimization problem (known as
the conditional least squares formation)

min
θ,φ

N∑
t=1

Z2
t . (12.2.5)

The error term Zt can be computed iteratively as follows:

Zt = Xt − Ft(φ, θ, µ) (12.2.6)

where

Ft(φ, θ, µ) = µ+
p∑
i=1

φi(Xt−i − µ) +
q∑
i=1

θiZt−i (12.2.7)
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12.2 Solving for the model parameters

12.2.1.1 Levenberg-Marquardt Algorithm

In mathematics and computing, the Levenberg-Marquardt algorithm (LMA), also known as the
damped least-squares (DLS) method, provides a numerical solution to the problem of minimizing
a function, generally nonlinear, over a space of parameters of the function. These minimization
problems arise especially in least squares curve fitting and nonlinear programming.
To understand the Levenberg-Marquardt algorithm, it helps to know the gradient descent method

and the Gauss-Newton method. On many “reasonable” functions, the gradient descent method
takes large steps when the current iterate is distant from the true solution, but is slow to converge
an the current iterate nears the true solution. The Gauss-Newton method is much faster for
converging when the current iterate is in the neighborhood of the true solution. The Levenberg-
Marquardt algorithm tries to get the best of best worlds, and combine the gradient descent step
with Gauss-Newton step in a weighted average. For iterates far from the true solution, the step
favors the gradient descent step, but as the iterate approaches the true solution, the Gauss-Newton
step dominates.
Like other numeric minimization algorithms, LMA is an iterative procedure. To start a min-

imization, the user has to provide an initial guess for the parameter vector, p, as well as some
tuning parameters τ, ε1, ε2, ε3, and kmax. Let Z(p) be the vector of calculated errors (Zt’s) for the
parameter vector p, and let J = (J1, J2, . . . , JN )T be a Jacobian matrix.
A proposed implementation is as follows:

Algorithm 12.2.1
Input: An initial guess for parameters φ0,θ0, µ0
Output: The parameters that maximize the likelihood φ∗,θ∗, µ∗

1: k ← 0 . Iteration counter
2: v ← 2 . The change in the weighting factor.
3: (φ,θ, µ)← (φ0,θ0, µ0) . Initialize parameter vector
4: Calculate Z(φ,θ, µ) with equation 12.2.6. . Vector of errors
5: A← JTJ . The Gauss-Newton Hessian approximation
6: u← τ ∗maxi(Aii) . Weight of the gradient-descent step
7: g ← JTZ(φ,θ, µ) . The gradient descent step.
8: stop← (‖g‖∞ ≤ ε1) . Termination Variable
9: while (not stop) and (k < kmax) do

10: k ← k + 1
11: repeat
12: δ ← (A+ u× diag(A))−1g . Calculate step direction
13: if ‖δ‖ ≤ ε2‖(φ,θ, µ)‖ then . Change in the parameters is too small to continue.
14: stop← true
15: else
16: (φnew,θnew, µnew)← (φ,θ, µ) + δ . Take a trial step in the new direction
17: ρ← (‖Z(φ,θ, µ)‖2 − ‖Z(φnew,θnew, µnew)‖2)/(δT (uδ + g)) . Calculate

improvement of trial step
18: if ρ > 0 then . Trial step was good, proceed to next iteration
19: (φ,θ, µ)← (φnew,θnew, µnew) . Update variables
20: Calculate Z(φ,θ, µ) with equation 12.2.6.
21: A← JTJ
22: g ← JTZ(φ,θ, µ)
23: stop← (‖g‖∞ ≤ ε1) or (‖Z(φ,θ, µ)2‖ ≤ ε3) . Terminate if we are close to the

solution.
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24: v ← 2
25: u→ u ∗max(1/3, 1− (2ρ− 1)3)
26: else . Trial step was bad, change weighting on the gradient decent step
27: v ← 2v
28: u← uv
29: until (stop) or (ρ > 0)
30: (φ∗,θ∗, µ∗)← (φ,θ, µ)

Suggested values for the tuning parameters are ε1 = ε2 = ε3 = 10−15, τ = 10−3 and kmax = 100.

12.2.1.2 Partial Derivatives

The Jacobian matrix J = (J1, J2, . . . , JN )T requires the partial derivatives, which are

Jt = (Jt,φ1 , . . . , Jt,φp , Jt,θ1 , . . . , Jt,θq , Jt,µ)T . (12.2.8)

Here the last term is present only when include_mean is True. The iteration relations for J are

Jt,φi = ∂Ft(φ, θ)
∂φi

= −∂Zt
∂φi

= Xt−i − µ+
q∑
j=1

θj
∂Zt−j
∂φi

= Xt−i − µ−
q∑
j=1

θjJt−j,φi , (12.2.9)

Jt,θi = ∂Ft(φ, θ)
∂θi

= −∂Zt
∂θi

= Zt−i +
q∑
j=1

θj
∂Zt−j
∂θi

= Zt−i −
q∑
j=1

θjJt−j,θi , (12.2.10)

Jt,µ = ∂Ft(φ, θ)
∂µ

= −∂Zt
∂µ

= 1−
p∑
j=1

φj −
q∑
j=1

θj
∂Zt−j
∂µ

= 1−
p∑
j=1

φj −
q∑
j=1

θjJt−j,µ. (12.2.11)

Note that the mean value µ is considered separately in the above formulations. When include_mean
is set to False, µ will be simply set to 0. Otherwise, µ will also be estimated together with φ and
θ. The initial conditions for the above equations are

Jt,φi = Jt,θj = Jt,µ = 0 for t ≤ p, and i = 1, . . . , p; j = 1, . . . , q , (12.2.12)

because we have fixed Zt for t ≤ p to be a constant 0 in the initial condition. Note that J is zero
not only for t ≤ 0 but also for t ≤ p.

12.2.2 Estimates of Other Quantities

Finally the variance of the residuals is

σ2 = 1
N − p

N∑
t=1

Z2
t . (12.2.13)

The estimate for the maximized log-likelihood is

l = −N2
[
1 + log(2πσ2)

]
, (12.2.14)

where σ2 uses the value in Eq. (12.2.13). Actually if you put Eq. (12.2.13) into Eq. (12.2.4), you
will get a result slightly different from Eq. (12.2.14). However, Eq. (12.2.14) is what R uses for
the method “CSS”.
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12.2 Solving for the model parameters

The standard error for coefficient a, where a = φ1, . . . , φp, θ1, . . . , θq, µ, is

errora =
√

(H−1)aa . (12.2.15)

The Hessian matrix is

Hab = ∂2

∂a∂b

(
1

2σ2

N∑
t=1

Z2
t

)
= 1
σ2

N∑
t=1

(Jt,aJt,b − ZtKt,ab) = 1
σ2

(
A−

N∑
t=1

ZtKt,ab

)
, (12.2.16)

where a, b = φ1, . . . , φp, θ1, . . . , θq, µ, σ2 is given by Eq. (12.2.13), A = JTJ and

Kt,ab = ∂Jt,a
∂b

= − ∂
2Zt
∂a∂b

. (12.2.17)

And

Kt,φiφj = −
q∑

k=1
θkKt−k,φiφj = 0

Kt,φiθj = −Jt−j,φi −
q∑

k=1
θkKt−k,φiθj

Kt,φiµ = −1−
q∑

k=1
θkKt−k,φiµ

Kt,θiφj = −Jt−i,φj −
q∑

k=1
θkKt−k,θiφj

Kt,θiθj = −Jt−i,θj − Jt−j,θi −
q∑

k=1
θkKt−k,θiθj

Kt,θiµ = −Jt−i,µ −
q∑

k=1
θkKt−k,θiµ

Kt,µφj = −1−
q∑

k=1
θkKt−k,µφj

Kt,µθj = −Jt−j,µ −
q∑

k=1
θkKt−k,µθj

Kt,µµ = −
q∑

k=1
θkKt−k,µµ = 0 , (12.2.18)

where the initial conditions are

Kt,ab = 0 for t ≤ p, and a, b = φ1, . . . , φp, θ1, . . . , θq, µ . (12.2.19)

According to Eqs. (12.2.18,12.2.19), Kt,φiφj and Kt,µµ are always 0.
The iteration equations Eq. (12.2.18) are quite complicated. Maybe an easier way to compute

K is to numerically differentiate the function

f(φ,θ, µ) = 1
2σ2

N∑
t=1

Z2
t , (12.2.20)
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where Zt values are computed using given coefficients of φ, θ and µ. For example,

Hab = 1
∆

[
f(a+ ∆/2, b+ ∆/2)− f(a−∆/2, b+ ∆/2)

∆ −

f(a+ ∆/2, b−∆/2)− f(a−∆/2, b−∆/2)
∆

]
for a 6= b , (12.2.21)

Haa = f(a+ ∆)− 2f(a) + f(a−∆)
∆2 (12.2.22)

where ∆ is a small number and the coefficients other than a and b are ignored from the arguments
of f(·) for simplicity.

12.2.2.1 Implementation

The key of LMA is to compute Jacobian matrix J in each iteration. In order to compute J , we
need to compute Zt for t = 1, . . . , N in a recursive manner. The difficulty here is how to leverage
the parallel capability of MPP databases. By carefully distributing the dataset to the segment
nodes - distribute time servies data by the time range, the recursive computation can be done in
parallel via approximation. It’s also necessary here to utilize the window function for the recursive
computation.

12.2.3 Exact Maximum Likelihood Calculation

12.3 Solving for the optimal model

12.3.1 Auto-Correlation Function

Note that there several common definitions of the auto-correlation function. This implementation
uses the normalized form.
The auto-correlation function is a cross-correlation of a function (or time-series) with itself, and

is typically used to find periodic behavior in a time-series. For a real, discrete time series, the
auto-correlation R(k) for lag k of a time series X with N data points is

RX(k) =
N∑

t=k+1

(xt − µ)(xt−k − µ)
Nσ2 . (12.3.1)

where σ2 and µ are the variance and mean of the time series respectively. For this implementation,
the range of desired k values will be small (≈ 10 log(N) ), and the auto-correlation function for the
range can be computed naively with equation 12.3.1.

12.3.2 Partial Auto-Correlation Function

The partial auto-correlation function is a conceptually simple extension to the auto-correlation
function, but greatly increases the complexity of the calculations. The partial auto-correlation is
the correlation for lag k after all correlations from lags < k have been accounted for.

Let

R(k) ≡ [RX(1), RX(2), . . . , RX(k)]T (12.3.2)

96



12.4 Seasonal Models

and let

Pk =


1 RX(1) . . . RX(k − 1)

RX(1) 1 . . . RX(k − 2)
...

... . . . ...
RX(k − 1) RX(k − 2) . . . 1

 (12.3.3)

Then the partial auto-correlation function Φ(k) for lag k is

Φ(k) = detP ∗k
detPk

(12.3.4)

where P ∗k is equal to the matrix Pk, except the kth column is replaced with R(k).

12.3.3 Automatic Model Selection

12.4 Seasonal Models
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13 Cox Proportional-Hazards

13.1 Introduction
Proportional-Hazard models enable comparison of survival models. Survival models are functions
describing the probability of an one-item event (prototypically, this event is death) with respect
to time. The interval of time before death occurs is the survival time. Let T be a random vari-
able representing the survival time, with a cumulative probability function P (t). Informally, P (t)
represents the probability that death has happened before time t.
An equivalent formation is the survival function S(t), defined as S(t) ≡ 1−P (t). Informally, this

is the probability that death hasn’t happened by time t. The hazard function h(t) which assesses
the instantaneous risk of demise at time t, conditional on survival upto time t.

h(t) = lim
∆t→0

p (t ≤ T < t+ ∆t|T ≥ t)
∆t (13.1.1)

= lim
∆t→0

1
∆t

p(T < t+ ∆t)− p(T < t)
P (T ≥ t) (13.1.2)

The relationship between h(t) and S(t), using S(t) = 1− p(T < t) is

h(t) = lim
∆t→0

1
∆t

(S(t+ ∆t)− S(t))
−S(t) (13.1.3)

= −S
′(t)

S(t) (13.1.4)

where
S′(t) = lim

∆t→0

S(t+ ∆t)− S(t)
∆t

denotes the derivative of S(t).
In the simplest case, the Cox model assumes that h(t) is

h(t) = eα(t) (13.1.5)

where exp(α(t)) is the baseline function, which depends only on t. However, in many applications,
the probability of death may depend on more than just t. Other covariates, such as age or weight,
may be important. Let xi denote the observed value of the ith covariate, then the Cox model is
written as

h(t) = eα(t)eβ1x1+β2x2+···+βmxm = eα(t)eβ
Tx (13.1.6)

where βi is the coefficient associated with the ith covariate.
Many applications take values from multiple observations, measuring the values of xi for each

observation.
In the proportional-hazard model, the hazard functions of two observations j and k are compared.

The ratio of the two is
hj(t)
hk(t)

= eα(t)eβ
Txj

eα(t)eβTxk
= eβ

Txj

eβTxk
(13.1.7)
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The critical idea here is that the ratio of the two hazard functions is completely independent of
the baseline function. This allows meaningful comparisons between samples without knowing the
baseline function, which may be difficult to measure or specify.

13.2 Applications
Generally, applications start with a list of n observations, each with m covariates and a time of
death. From this n× (m+1) matrix, we would like to derive the correlation between the covariates
and the hazard function. This amounts to finding the values of β.
The values of β can be estimated with the method of partial likelihood. This method begins by

sorting the observations by time of death into a list [t1, t2, . . . , tn] such that ti ≤ tj : i < j ∀i, j. For
any time ti, let R(ti) be the set of observations still alive at time ti.
Given that there was a death at time ti and observation k was alive prior to ti, the probability

that the death happened to observation k is

Pr(Tk = ti|R(ti)) = eβ
Txk∑

j∈R(ti) e
βTxj

. (13.2.1)

The partial likelihood function can now be generated as the product of conditional probabilities.
More formally,

L =
n∏
i=1

(
eβ

Txi∑
j∈R(ti) e

βTxj

)
. (13.2.2)

The log-likelihood form of this equation is

L =
n∑
i=1

βTxi − log

 ∑
j∈R(ti)

eβ
Txj

 . (13.2.3)

An estimation of β can be found by simply maximizing this log-likelihood. To maximize the
likelihood, it helps to have the derivative of equation 13.2.3, which is

∂L

∂βk
=

n∑
i=1

xik − ∑j∈R(ti) xjke
βTxj∑

j∈R(ti) e
βTxj

 . (13.2.4)

It follows that the second derivative is

∂2L

∂βkβl
=

n∑
i=1


(∑

j∈R(ti) xjke
βTxj

) (∑
j∈R(ti) xjle

βTxj
)

(∑
j∈R(ti) e

βTxj
)2 −

∑
j∈R(ti) xjkxjle

βTxj∑
j∈R(ti) e

βTxj

 . (13.2.5)

13.2.1 Incomplete Data

Frequently, not every observation will have an associated time of death. Typically, this arises when
the period of observation terminates before the entire population being studied has died. This is
known as censoring the data. To account for this, an additional indicator variable is introduced δi,
which is set to 1 if the ith observation has an associated time of death, and 0 otherwise.

Incorporating this indicator variable into equation 13.2.2 gives

L =
n∏
i=1

(
eβ

Txi∑
j∈R(ti) e

βTxj

)δi
. (13.2.6)

The appropriate changes to the LLH function and its derivatives are trivial.
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13.2 Applications

13.2.2 Partition and aggregation of the data to speed up

In order to speed up the computation, we first partition the data and aggregate each piece of the
data into one big row. During the computation, the whole big row is loaded into the memory for
processing, which speeds up the computation.
When we partition the data, we want to (1) keep the sorted descending order of the time column,

(2) make sure that each piece has approximately the same amount of data so that the work load is
even, and (3) do this as fast as possible.
Our solution to to first sample a certain amount of the data, and then compute the approximate

break points using the sampled data. The sampled data should be small enough to load into the
memory, abd also large enough so that the break points can be computed relatively accurate.
After we have partitioned the data, we aggregate each partition into one big row. The order of

the data should be kept during the aggregation.
Then we use the sequential algorithm described in the next to process the new data row by row

in the order of the time column. Since each big row contains lots of original rows, and we deal with
them all in the memory, this can speed up the computation.

13.2.3 Implementation of Newton’s Method

Newton’s method is the most common choice for estimating β by minimizing 13.2.2 using the
following update rule:

βk = βk − αk
(
∇2L

−1∇L
)

(13.2.7)

where αk is a positive scalar denoting the step length in the newton direction ∇2L
−1∇L determined

using the first and second derivative information. We would like to emphasize that the problems
we are designing this system for are those with many records and few features i.e. n� m, thereby
keeping the inverse operation on the hessian matrix relatively cheap.
The gradient and Hessian matrix may be hard to parallelize therefore reducing an advantage

for large number of observations. To elaborate, consider equations 13.2.4 and 13.2.5 which are
sums with independent terms. One might think it is natural to reduce the computational by paral-
lelization. Efficient parallelization may be achieved if each term could be computed independently
in parallel by a set of worker tasks and a master task could collect the output from each worker
node sum them together. However, this might not work well in this setting. To see why, consider
parallelizing equation 13.2.5. Each worker task is given one term in the sum, which looks like(∑

j∈R(ti) xjke
βTxj

) (∑
j∈R(ti) xjle

βTxj
)

(∑
j∈R(ti) e

βTxj
)2 −

∑
j∈R(ti) xjkxjle

βTxj∑
j∈R(ti) e

βTxj
. (13.2.8)

Note that the sums in the numerator are summing over all the data points in the data matrix.
A similar such issue is encountered while computing the first derivative terms as defined in 13.2.4.
However, we note that this sum has a structure that allows it to be computed in linear time (with
respect to the number of data points) using the following quantities.

Hi =
∑

j∈R(ti)
xje

βTxj (13.2.9)

Si =
∑

j∈R(ti)
eβ

Txj (13.2.10)

Vi =
∑

j∈R(ti)
xjx

T
j e

βTxj (13.2.11)
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13.3 Stratification Support

Note that Hi is a column vector with m elements ( Hi ∈ Rm), Si is a scalar and and Vi is an
m×m matrix. We can now write the first derivative of the maximum likelihood estimator, defined
in Equation 13.2.4 as

∂L

∂βk
=

n∑
i=1

(
xi −

Hi

Si

)
(13.2.12)

while the second derivative, defined in Equation 13.2.5, can be reduced to

∂2L

∂βkβl
=

n∑
i=1

(
HiH

T
i

S2
i

− Vi
Si

)
(13.2.13)

Since we assume that the data points are sorted in increasing order i.e R(ti) = {i, i + 1 . . . n}, we
can calculate the above summation as

Hi = Hi+1 + xie
βTxi (13.2.14)

Si = Si+1 + eβ
Txi (13.2.15)

Vi = Vi+1 + HiH
T
i

S2
i

− Vi
Si
. (13.2.16)

With this recurrence relationship, the hessian matrix and the gradient direction can be computed
in linear time.

13.3 Stratification Support
A crucial component of the Cox Proportional Hazards model is the proportional hazards assump-
tion: The hazard for a given individual is a fixed proportion of the hazard for any other individual
in the same stratum, and the ratio of the hazards is constant across time.
In actual use cases, the proportional hazard assumption may not be satisfied if we use all inde-

pendent variables as covariates. A stratified Cox regression model may then be useful. It offers a
way such that we can choose a subset of independent variables as covariates while are still taking
the remaining independent variables into account. The stratified Cox regression is available in both
R [32] and Stata [59].
Stratification is used as shorthand for building a Cox model that allows for more than one

stratum, and hence, allows for more than one baseline hazard function. Stratification provides two
pieces of key, flexible functionality for the end user of Cox models:

i) Allows a categorical variable Z to be appropriately accounted for in the model without esti-
mating its predictive/associated impact on the response variable (i.e. without estimating Z’s
“coefficient”).

ii) Categorical variable Z is predictive/associated with the response variable, but Z may not
satisfy the proportional hazards assumption.

To explicitly clarify how stratification differentiates from grouping support:

• Grouping by a categorical column would build a completely separate Cox model for each
value of the categorical column, where the baseline hazards for each value of the categorical
column would be different and the estimated coefficient values for each explanatory variable
would be different for each value of the categorical column.
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13.3 Stratification Support

• Stratifying by a categorical column would build a single common Cox model, where the
baseline hazards for each value of the categorical column would be different, but the estimated
coefficient values for each explanatory variable would be the same for each value of the
stratum.

It is valuable to emphasize that all strata share all coefficients, and that the only difference
between strata is the baseline hazard. In other words, coefficients for all non-strata explanatory
variables are identical across the different strata.

13.3.1 Estimating A Stratified Cox Model

The parameter estimation is done by maximizing the product of likelihoods, each from a stra-
tum [10].
Given n observations, each with m covariates and each in one of K strata 1, let STk denote the

set of observations in the k-th stratum.
Because, as an objective function, the sum of log-likelihoods is equivalent to the product of like-

lihoods, according to Equation 13.2.3, we have the log-likelihood associated with the k-th stratum,

Lk =
∑
i∈STk

βTxi − log

 ∑
j∈Rk(ti)

eβ
Txj

 , (13.3.1)

where Rk(ti) the set of observations in STk and still alive at time ti.
Therefore, the objective function of stratified cox regression can be expressed as

Lstratified =
K∑
k=1

Lk =
K∑
k=1

∑
i∈STk

βTxi − log

 ∑
j∈Rk(ti)

eβ
Txj

 . (13.3.2)

The appropriate changes to gradient, Hessian and censoring are trivial.

13.3.2 When We Need A Stratified Cox Model?

General practice in standard statistical packages (i.e. R, SAS) is to make use of the Schoenfeld
residuals to gauge whether or not the proportional hazards assumption has been violated.
The Schoenfeld residuals are centered on zero and should be independent of time if PHA (pro-

portional hazard assumption) is true. Deviations from this, i.e. residuals that exhibit some trend
in time, indicate that the PHA is violated.
The Schoenfeld residuals, at the time when a failure or death were to occur, are defined by the

difference between the observed and expected covariate values at that time. Also note that the
Schoenfeld residuals are zeroes for censored observations.

r̂i = xi − E[xi] , only for δi = 1 , (13.3.3)

To compute the expected values at time ti, we use the probability distribution given by Equation
13.2.1.

E[xi] =
∑

k∈R(ti)
xkp(k dies at ti)

=
∑
k∈R(ti) xke

βxk∑
j∈R(ti) e

βxj
, (13.3.4)

1Note that this does not mean that we have K variables other than the m covariates, but K groups classified by
strata ID variables.
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13.3 Stratification Support

where the values of β are the fitted coefficients, and R(t) is the set of individuals that are still alive
at time t.

13.3.2.1 Scaled Schoenfeld Residuals

Suggested by Grambsch and Therneau [34] and also followed by statistical softwares [17], scaling
the Schoenfeld residuals by an estimator of its variance yields greater diagnostic power. The scaled
Schoenfeld residuals is

r̂∗i = [Var(r̂i)]−1r̂i (13.3.5)
≈ mVar(β̂)r̂i, (13.3.6)

where Var denotes a covariance matrix, and m is the number of uncensored survival times. r̂i is a
length-n vector, and Var(β̂) is a n × n matrix, where m is the number of uncensored data points
and n is the number of features.

13.3.2.2 Transformation of Time

Transformation of the time values often helps the analysis of the correlation between the scaled
Schoenfeld residuals and time. Common transformation methods include ranking, computing log,
and Kaplan-Meier’s method. (We don’t fully understand the last one yet.)

2

13.3.2.3 p-values

The process for computing the p-values of the correlation in R’s survival package is given in the
following.
Letm be the number of uncensored data points, n be the number of features, t̂ be the transformed

survival time, which is a length-m vector, Var(β̂) be the variance matrix for the fitted coefficients
which is a n× n matrix, R̂ is the unscaled Schoenfeld residuals, which is a m× n matrix.

w = t̂− ¯̂t , a length-m vector , (13.3.7)
v = mwT R̂Var(β̂) , a length-n vector (13.3.8)

zi = 1
mwTw

· v2
i[

Var(β̂)
]
ii

, for i = 1, . . . , n , (13.3.9)

pi = 1− χ2
1(zi), for i = 1, . . . , n . (13.3.10)

Here ¯̂t is the average of the transformed survival times. zi is the z-stats for i-th coefficient. pi is
the p-value for i-th coefficient. We need a separate function to compute w, but both v and wTw
can be computed in an aggregate function. zi and pi can be computed in the final function of that
aggregate function. χ2

1(·) is the chi-square function with the degree of freedom being 1.

2The cox.zph() function in R allows different options for transformation of times: “km”, “rank”, “log” and
“identity”. “km” stands for Kaplan-Meier’s method. “rank” takes the ranks of the times instead of times.
“log” uses the logarithm of times. And “identity” does nothing and directly uses times.[68]

103



13.3 Stratification Support

13.3.3 Implementation

We can use the iteration equations Eqs. (13.2.14, 13.2.15, 13.2.16) to compute the residuals and
the hessian, which is needed by the variance matrix.
The current implementation uses an ordered aggregate on the data to compute these quantities,

which is not in parallel. To enable a distributed solution we can use the “GROUP BY” functionality
provided by SQL to enable the independent computation of the log-likelihood function in each
distributed segment corresponding to each strata (‘transition’ function). These values can then be
added across the segments (‘merge’ function), with the gradient for the parameter computed on
the final sum (‘final’ function).

13.3.4 Resolving Ties

In “coxph_train”, Breslow method is used to resolve ties, which uses as the partial likelihood [40]

L =
m∑
i=1

βTxi+ − di log

 ∑
j∈R(ti)

eβ
Txj

 (13.3.11)

=
m∑
i=1

βTxi − log

 ∑
j∈R(ti)

eβ
Txj


+

(13.3.12)

where di is the number of observations that have the same ti, and xi+ is the sum of the covariants
over all observations that have the same ti. m is the number of distinct survival times. Here [·]+
means sum over all observations with the same survival time.

13.3.5 Robust Variance Estimators

In MADlib, we implement robust variance estimator devised by Lin and Wei [47]. With our
notations above, let

W i = δi ·

xi −
(∑

l:tl≥ti e
βTxlxl

)
∑
l:tl≥ti e

βTxl

− ∑
j:tj≤ti

δj · eβ
Txi∑

k:tk≥tj e
βTxk

·

xi −
(∑

k:tk≥tj e
βTxkxk

)
∑
k:tk≥tj e

βTxk

 .
= δi ·

[
xi −

H i

Si

]
−

∑
j:tj≤ti

{
δj ·

eβ
Txi

Sj
·
[
xi −

Hj

Sj

]}
.

= δi ·
[
xi −

H i

Si

]
−

∑
j:tj≤ti

δj ·
eβ

Txi

Sj
xi +

∑
j:tj≤ti

δj ·
eβ

Txi

Sj

Hj

Sj
.

where

Hi =
∑
l:tl≥ti

eβ
Txlxl

Si =
∑
l:tl≥ti

eβ
Txl
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13.4 How to prevent under/over -flow errors ?

Let

Ai =
∑

j:tj≤ti

δj
Sj
,

Bi =
∑

j:tj≤ti

δjHj

S2
j

,

we have
W i = δi ·

[
xi −

H i

Si

]
− eβ

TxiAixi + eβ
TxiBi.

And the recursions of Ai and Bi are given if we assume time ti is sorted ascending order

Ai = Ai−1 + δi
Si

Bi = Bi−1 + δiH i

S2
i

The meat part of the sandwich estimator is

M =
n∑
i=1
W iW

T
i . (13.3.13)

13.3.6 Clustered Variance Estimation

The data has multiple clusters m = 1, . . . ,K, and the meat part is

M = ATA , (13.3.14)

where the matrix A’s m-th row is given by

Am =
∑
i∈Gm

W i . (13.3.15)

Here Gm is the set of rows of that belong to the m-th cluster.
With stratification, we take into account of the strata only when we computeH i, Si, Ai, Bi and

W i. The calculations of Am and M only need to group by the clustered variables and the strata
variables are irrelavent.

13.4 How to prevent under/over -flow errors ?
A problem that is not mentioned above but appears in the real applications of the CoxPH training
model is the under-flow or over-flow errors. We have exponential functions in the computation, and
it is very easy to get under-flow or over-flow errors if the coefficients become too small or large at
certain steps.
We use the same method as R’s "survival" package to deal with the possible under-flow/over-flow

errors. This methods contains three parts, which makes the algorithm described above even more
complicated:
(1) center and scale the independent variables.

xi →
xi − E[x]

E[|xi − E[x]|] (13.4.1)
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13.5 Marginal Effects

(2) Estimate the maximum possible value of all the coefficients using the coefficients computed
from the first iteration.

β
(max)
k = 20

√
hkk∑
i δi

, (13.4.2)

where β(max)
k is the estimate of the possible maximum value of the coefficient βk, hkk = ∂2L/∂β2

k

is the diagonal elements of the Hessian matrix, and δi = 0, 1 is the censoring status of the records.
During the computation, whenever the coefficient |βk| > β

(max)
k , we set βk → sign(βk)β

(max)
k .

The authors of "survival" package explains in http://stat.ethz.ch/R-manual/R-devel/RHOME/library/survival/doc/sourcecode.pdf
why they use such an estimate for the coefficients:
"We use a cutpoint of β ∗std(x) < 23 where the standard deviation is the average standard devia-

tion of x within a risk set. The rationale is that e23 is greater than the current world population, so
such a coefficient corresponds to a between subject relative risk that is larger than any imaginable."
In their implementation, they also use 1/hkk as an approximation to std(x). And besides 23,

they also use 20 in the estimate.
(3) Although (1) and (2) stabalize the computation, it is still not enough. Step-halving method

is used. Whenever the current iteration’s log-likelihood is smaller than that of previous iteration,
we accept the coefficients as

βk = 1
2(βnewk + βoldk ) (13.4.3)

(4) The stopping threshold is
1− Lnew

Lold
< threshold . (13.4.4)

13.5 Marginal Effects
See 6.5 for an introduction to marginal effects (all notations below are the same as those defined in
6.5). We implement the default algorithm used by Stata 13.1 for computing the marginal effects.
Note that older versions of Stata may use a different default algorithm to compute values different
from MADlib.

13.5.1 Basic Formulation

The relative hazard ratio for i-th record is given by

hi = h0 exp (β · f) , (13.5.1)

where h0 is the baseline and both β and f are vectors. Here we use the indices i or j for the data
records, and a or b for the indices of covariate terms in β · f(xi). And we will use u or v to denote
the indices of x.
The value of the baseline h0 is arbitrary and difficult to compute. Strata ignores the baseline

hazard value for the computation of marginal effect. For MADlib, we follow the same principle and
ignore the baseline (i.e. set baseline as 1) to compute hazard value.

106



13.5 Marginal Effects

Thus the marginal effect corresponding to variable xk is computed as,

MEk = ∂hi
∂xk

= ∂eβf

∂xk

= eβfβ
∂f

∂xk
.

Vectorizing the above equation (similar to 6.5.4.2) gives

ME = eβfJTβ,

where J is defined in 6.5.4.
Censoring status and stratification are irrelavant to the marginal effect calculation and can be

ignored.

13.5.2 Categorical variables

For categorical variables, we compute the discrete difference as described in 6.5.2. The discrete
difference with respect to xk is given as

MEk = hset − hunset

= eβf
set − eβfunset

13.5.3 Standard Error

As has already been described in 6.5.5, the method to compute the standard errors is

Var(ME) = SVar(β) ST , (13.5.2)

where the matrix S, computed as the partial derivative of the marginal effect over all the coefficients,
is a M ×N matrix Smn = ∂MEm

∂βn

Smn = ∂MEm

∂βn

= ∂

∂βn

(
eβfβ

∂f

∂xm

)
= eβf

∂

∂βn

(
β
∂f

∂xm

)
+ ∂eβf

∂βn
β
∂f

∂xm

= eβf
∂fn
∂xm

+ eβf · fn · β
∂f

∂xm

= eβf
(
∂fn
∂xm

+ fn · β
∂f

∂xm

)
.

Vectorizing this equation to express for the complete matrix,

S = eβf
(
JT + (JTβ)fT

)
.
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14 Sandwich Estimators

14.1 Introduction
Given a regression setup of n data points, each defined by a feature vector xi and a category
yi, we assume that yi is controlled by a k-dimensional parameter vector θ. Generally, we are
interested in finding the values of θ that best predict yi from xi, with best being defined as the
values that maximize some likelihood function L(y, x, θ). The maximization is typically solved
using the derivative of the likelihood ψ and the Hessian H. More formally, ψ is defined as

ψ(yi, xi, θ) = ∂l(xi, yi, θ)
∂θ

(14.1.1)

and H is defined as

H(y, x, θ) = ∂2L(x, y, θ)
∂θ2 . (14.1.2)

In addition to the values of θ, we may also be interested in the covariance matrix S(θ) of θ. This
can be expressed in a sandwich formulation, of the form

S(θ) = B(θ)M(θ)B(θ). (14.1.3)

The B(θ) matrix is commonly called the bread, whereas the M(θ) matrix is the meat.

14.1.1 The Bread

Computing B is relatively straightforward,

B(θ) = n

(
n∑
i

−H(yi, xi, θ)
)−1

(14.1.4)

14.1.2 The Meat

There are several choices for the M matrix, each with different robustness properties. The estima-
tors we are interested in for this implementation are the Huber/White estimator, and the clustered
estimator.
In the Huber/White estimator, the matrix M is defined as

MH =
n∑
i

ψ(yi, xi, θ)Tψ(yi, xi, θ). (14.1.5)
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15 Generalized Linear Models

Author Liquan Pei

Author Lei Huang

History v0.1 Initial version
v0.2 Extention to multivariate response and ordinal response case

15.1 Introduction
Linear regression model assumes that the dependent variable Y is equal to a linear combination
X>β and a normally distributed error term

Y = X>β + ε

where β = (β1, . . . , βm)> is a vector of unknown parameters and X = (X1, . . . , Xm)> is a vector
of independent variables.
In a generalized linear model (GLM), the distribution of dependent variable Y is a member from

the exponential family and the mean µ = E(Y ) depends on the independent variables X through

µ = E(Y ) = g−1(η) = g−1(X>β)

where η = X>β is the linear predictor and g is the link function.
In what follows, we denote G(η) = g−1(η) as the inverse link function.

15.1.1 Exponential Family

A random variable Y is a member from the exponantial family if its probability function or its
density function has the form

f(y, θ, ψ) = exp
{
yθ − b(θ)
a(ψ) + c(y, ψ)

}
where θ is the canonical parameter. The mean and variance of the exponential family are

• E(Y ) = µ = b′(θ)

• Var(Y ) = V (µ)a(ψ) = b′′(θ)a(ψ)

15.1.2 Linear Predictor

The linear predictor η incorporates the information about the independent variables into the model.
It is related to the expected value of the data through link functions.
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15.2 Parameter Estimation

15.1.3 Link Function

The link function provides the relationship between η, the linear predictor and µ, the mean of
the distribution function. There are many commonly used link functions, and their choice can be
somewhat arbitrary. It makes sense to try to match the domain of the link function to the range
of the distribution function’s mean.
For canonical parameter θ, the canonical link function is the function that expresses θ in terms of

η = g(µ). In what follows we treat θ = θ(η) = h(g(µ)). If we choose h to be an identical function,
then θ = η and µ = G(η) = µ(θ).

15.2 Parameter Estimation
We estimate unknown parameters β by maximizing the log-likelihood of a GLM. Given the examples
Y = (Y1, . . . , Yn)> and denote their mean as µ = (µ1, . . . , µn)>, the log-likelihood for a GLM is

l(Y ,µ, ψ) =
n∑
i=1

log f(Yi, θi, ψ)

=
n∑
i=1

{
Yiθi − b (θi)

a (ψ) − c(Yi, ψ)
}

where θi = θ(ηi) = θ(x>i β)
Note that a(ψ) and c(Yi, ψ) dose not depend on β, we then maximize

l̃(Y ,µ) =
n∑
i=1
{Yiθi − b(θi)} (15.2.1)

with respect to β. In what follows, we denote xi to be the vector of values of independent variables
for Yi.

15.2.1 Iterative Reweighted Least Squares Algorithm

We use iterative reweighted least squares (IRLS) algorithm to find β that maximize l̃(Y ,µ). Specif-
ically, we use Fisher scoring algorithm which updates β at step k + 1 using

βk+1 = βk +
{

E[H(βk)]
}−1
∇β l̃(βk)

where E[H] is the mean of Hessian over examples Y and ∇β l̃ is the gradient. For GLM, the
gradient is

∇β l̃ =
n∑
i=1

{
Yi − b′(θi)

}
∇βθi

Note that µi = G(ηi) = G(xi>β) = b′(θi), we have

∇βθi = G′(ηi)
V (µi)

xi
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then

∇β l̃ =
n∑
i=1
{Yi − µi}

G′(ηi)
V (µi)

xi

The Hessian is

H(β) =
n∑
i=1

{
−b′′(θi)∇βθi∇βθi> −

{
Yi − b′(θi)

}
∇2
βθi
}

=
n∑
i=1

{
G′(ηi)2

V (µi)
− {Yi − µi}∇2

βθi

}
xixi

>

Note that E[Yi] = µi, we have

E[H(β)] =
n∑
i=1

{
G′(ηi)2

V (µi)

}
xixi

>

Define the weight matrix

W = diag
(
G′(η1)2

V (µ1) , . . . ,
G′(ηn)2

V (µn)

)
and define

Ỹ =
(
Y1 − µ1
G′(η1) , . . . ,

Yn − µn
G′(ηn)

)>
and the design matrix

X> = (x1, . . . ,xn)

Finally, the update rule for GLM is

βk+1 = βk + (X>WX)−1X>WỸ

= (X>WX)−1X>WZ

where Z = (Z1, . . . , Zn) is a vector of adjusted dependent variables

Zi = xi
>βk + Yi − µi

G′(ηi)
Note that each step is the result of a weighted least square regression on the adjusted variables Zi
on xi and this the reason that this algorithm is called iterative reweighted least squares.
The IRLS algorithm for GLM is as follows

Algorithm 15.2.1
Input: X, Y , inverse link function G(η), dispersion function V (µ) and initial values β0

Output: β that maximize l̃(Y ,µ)
1: k ← 0
2: repeat
3: Compute µ where µi = G(ηi) = G(xi>βk)
4: Compute Z where Zi = xi

>βk + Yi−µi
G′(ηi)

5: Compute W where Wii = G′(ηi)2

V (µi)

6: βk+1 = (X>WX)−1
X>WZ

7: until βk+1 converges
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15.2.2 Functions for contructing the exponential families

Table 15.1 [31] provides functions a(), b() and c() to contruction the exponential families,

Family a(ψ) b(θ) (̧y, ψ)
Gaussian ψ θ2/2 −1

2
[
y2/ψ + loge(2πψ)

]
Binomial 1/n loge(1 + eθ) logeCnny
Poisson 1 eθ −logey!
Gamma ψ − loge(−θ) ψ−1 loge(y/ψ)− loge y − loge Γ(ψ−1)

Inverse-Gaussian −ψ
√

2θ −1
2
[
loge(πψy3)3 + 1/(ψy)

]
Table 15.1: Functions for constructing the exponential families

15.2.3 Multivariate response family

Instead of a single scalar number, some response variable follows a multivariate distribution (i.e.
the response variable is a vector instead of a scalar number). One example is multinomial GLM
where the response variable is an indictor vector containing zeros and ones to dummy code the
corresponding categories. For illustration purpose, in this section, we are discussing multinomial
GLM. However, other distributions can be easily extended.
Let J denote the number of categories, yi = (yi1, yi2, ..., yi(J−1))T be the indicator vector for ith

subject where each yij is the binary indicator whether subject i is in categories j, µij will be the
probabilty subject i is in category j. Therefore, we can have the log likelihood as below,

l =
I∑
i=1

J−1∑
j=1

yij log µij

1−
∑J
j=1 µij

+ log(1−
J−1∑
j=1

)


=

I∑
i=1

J−1∑
j=1

yijθij − log(1 +
J−1∑
j=1

exp θij)


Define b(θi) = log(1 +

∑J−1
j=1 exp θij), then it can be showed Ob(θi) = µi and

OOT b(θi) =


µi1(1− µi1) −µi1µi2 ... −µi1µi(J−1)
−µi2µi1 µi2(1− µi2) ... −µi2µi(J−1)

...
...

...
...

−µi(J−1)µi1 −µi(J−1)µi2 ... µi(J−1)µi(J−1)


We set V = OOT b(θi)

Let ηij = gj(µi) and g() = (g1(), g2(), ..., gJ−1())T be the link map, which is <J−1 to <J−1. Also
we have µi = G(ηi) be its inverse map. We define the derivative ofG to beG′ =

(
∂µi
∂ηi1

, ∂µi∂ηi2
, ..., ∂µi

∂ηi(J−1)

)
.

For example, in multinomial logistic regression, ηij = θij , then G′ = V .
Denote the coefficient to be βkj where k stands for the kth predictor and j stands for the jth

category. Then we have

∂li
∂βkj

= (yi − Ob(θi))T
∂θi
∂µi

∂µi
∂ηij

∂ηij
∂βkj

= (yi − µi)TV −1G′jxik
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where G′j is the jth column of G′.

∂2li
∂βkj∂βlh

= −xil(G′h)TV −1OOT b(θi)V −1G′jxik

= −xil(G′h)TV −1G′jxik

As a entire vector β,

Oβli =
(
(yi − µi)TV −1G′(µi)

)T
⊗Xi

E
[
OOTβ li

]
= −

(
[G′(µi)]TV −1[G′(µi)]

)
⊗ (XiX

T
i )

where Xi = (xi1, xi2, ..., xip)T .
Finally, we can use the below update equation for Newton-Raphson method,

βk+1 = βk +
{

I∑
i=1

(
[G′(µi)]TV −1[G′(µi)]

)
⊗ (XiX

T
i )
}−1 I∑

i=1

{(
(yi − µi)TV −1G′(µi)

)T
⊗Xi

}

15.2.4 Ordinal logistic regression

In statistics, the ordered logit model (also ordered logistic regression or proportional odds model),
is a regression model for ordinal dependent variables. For example, if one question on a survey is to
be answered by a choice among "poor", "fair", "good", "very good", and "excellent", and the purpose
of the analysis is to see how well that response can be predicted by the responses to other questions,
some of which may be quantitative, then ordered logistic regression may be used. It can be thought
of as an extension of the logistic regression model that applies to dichotomous dependent variables,
allowing for more than two (ordered) response categories.
The model we implement here only applies to data that meet the proportional odds assumption,

the meaning of which can be exemplified as follows.

log
( Pr(Yi ≤ j)

1− Pr(Yi ≤ j)

)
= αj − β1xi1 − β2xi2 − ...− βpxip

where Pr(Yi ≤ j) is the cumulative probability that the ith subject belongs to the first jth categories;
αj is category-specific intercept and βk is feature-specific coefficient. Using the notation in the
subsection 15.2.3, the link function is

g
(
[µ1, µ2, ..., µJ−1]T

)
=
[
log

(
µ1

1− µ1

)
, log

(
µ1 + µ2

1− µ1 − µ2

)
, ..., log

(
µ1 + µ2 + ...+ µJ−1

1− µ1 − µ2 − ...− µJ−1

)]T
Then the inverse of link function G is,

G
(
[η1, η2, ..., ηJ−1]T

)
=
[ exp(η1)

1 + exp(η1) ,
exp(η2)

1 + exp(η2) −
exp(η1)

1 + exp(η1) ,

...,
exp(ηJ−1)

1 + exp(ηJ−1) −
exp(ηJ−2)

1 + exp(ηJ−2)

]T
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Its derivative matrix G′ is

G′ =
[
∂µ

∂η1
,
∂µ

∂η2
, ...,

∂µ

∂ηJ−1

]

=



exp(η1)
(1+exp(η1))2 0 0 ... 0
− exp(η1)

(1+exp(η1))2
exp(η2)

(1+exp(η2))2 0 ... 0
0 − exp(η2)

(1+exp(η2))2
exp(η3)

(1+exp(η3))2 ... 0
...

...
... ...

...
0 0 0 ...

exp(ηJ−1)
(1+exp(ηJ−1))2


Define hi =

∑J−1
j=1

∂µi
∂ηij

, then as a entire coefficient vector γ = [α1, α2, ..., αJ−1, β1, β2, ..., βp]T ,

Oγli =

 {(yi − µi)TV −1G′i

}T
−(yi − µi)TV −1hiXi


E
[
OOTγ li

]
= −

[
(G′i)TV −1G′i −(G′i)TV −1hiX

T
i

−Xih
T
i V
−1Gi hTi V

−1hiXiX
T
i

]

where Xi = (xi1, xi2, ..., xip)T , G′i = G′(ηi1, ηi2, ..., ηiJ−1). We can then implement Newton-Raphson
method using above gradient and Hessian matrix.

15.2.5 Ordinal probit model

In the ordinal probit model, instead of logistic link function used in ordinal logistic regression, the
probit function Φ(x) is used. Therefore the model becomes,

Φ−1 (Pr(Yi ≤ j)) = αj − β1xi1 − β2xi2 − ...− βpxip

and the link function is

g
(
[µ1, µ2, ..., µJ−1]T

)
=
[
Φ−1(µ1),Φ−1(µ1 + µ2), ...,Φ−1(µ1 + µ2 + ...+ µJ−1)

]T
Then the inverse of link function G is,

G
(
[η1, η2, ..., ηJ−1]T

)
= [Φ(η1),Φ(η2)− Φ(η1), ...,Φ(ηJ−1)− Φ(ηJ−2)]T

Its derivative matrix G′ is

G′ =
[
∂µ

∂η1
,
∂µ

∂η2
, ...,

∂µ

∂ηJ−1

]

=


φ(η1) 0 0 ... 0
−φ(η1) φ(η2) 0 ... 0

0 −φ(η2) φ(η3) ... 0
...

...
... ...

...
0 0 0 ... φ(ηJ−1)


where Φ(x) and φ(x) are the cumulative probability and density probability of standard normal
distribution.
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16 Decision Trees: Classification and
Regression

Authors Rahul Iyer and Liquan Pei

History v0.2 Parallelism
v0.1 Initial version: introduction, theory, and interface

16.1 Introduction
Notes, examples and figures in this section are borrowed from [38] and [43].
Tree-based methods for regression and classification involve stratifying or segmenting the predic-

tor space into a number of simple regions. In order to make a prediction for a given observation, we
typically use the mean or the mode of the training observations in the region to which it belongs.
Since the set of splitting rules used to segment the predictor space can be summarized in a tree,
these types of approaches are known as decision tree methods. Tree-based methods are simple and
useful for interpretation. However, they typically are not competitive with the best supervised
learning approaches, in terms of prediction accuracy. The results from multiple decision tree are
usually combined to yield a single consensus prediction often resulting in dramatic improvements
in prediction accuracy, at the expense of some loss in interpretation.

16.1.1 Basics of Decision Trees

In order to motivate tree methods, we begin with a simple example.
Let’s consider a regression problem with continuous response Y and inputs X1 and X2, each

taking values in the unit interval. The top left panel of Figure 16.1 shows a partition of the feature
space by lines that are parallel to the coordinate axes. In each partition element we can model Y
with a different constant. However, there is a problem: although each partitioning line has a simple
description like X1 = c, some of the resulting regions are complicated to describe.
To simplify matters, we restrict attention to recursive binary partitions like that in the top right

panel of Figure 16.1. We first split the space into two regions, and model the response by the
mean of Y in each region. We choose the variable and split-point to achieve the best fit. Then
one or both of these regions are split into two more regions, and this process is continued, until
some stopping rule is applied. For example, in the top right panel of Figure 16.1, we first split at
X1 = t1. Then the region X1 ≤ t1 is split at X2 = t2 and the region X1 > t1 is split at X1 = t3.
Finally,the region X1 > t3 is split at X2 = t4. The result of this process is a partition into the five
regions R1, R2, . . . , R5 shown in the figure. The corresponding regression model predicts Y with a
constant cm in region Rm, that is,

f(X) =
5∑

m=1
cmI(X1, X2) ∈ Rm.
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306 9. Additive Models, Trees, and Related Methods
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FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a
two-dimensional feature space by recursive binary splitting, as used in CART,
applied to some fake data. Top left panel shows a general partition that cannot
be obtained from recursive binary splitting. Bottom left panel shows the tree cor-
responding to the partition in the top right panel, and a perspective plot of the
prediction surface appears in the bottom right panel.

Figure 16.1: (Figure from [38].) Top right panel shows a partition of a two-dimensional feature
space by recursive binary splitting, applied to some arbitrary data. Top left panel
shows a general partition that cannot be obtained from recursive binary splitting.
Bottom left panel shows the tree corresponding to the partition in the top right
panel, and a perspective plot of the prediction surface appears in the bottom right
panel.

This same model can be represented by the binary tree in the bottom left panel of Figure 16.1.
The full dataset sits at the top of the tree. Observations satisfying the condition at each junction
are assigned to the left branch, and the others to the right branch. The terminal nodes or leaves
of the tree correspond to the regions R1, R2, . . . , R5. The bottom right panel is a perspective plot
of the regression surface from this model.

Prediction via Stratification of the Feature Space: We now discuss the process of building
a regression tree. Roughly speaking, there are two steps.

i) We divide the predictor space - that is, the set of possible values for X1, X2, . . . , Xp into J
distinct and non-overlapping regions, R1, R2, . . . , RJ .
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ii) For every observation that falls into the region Rj , we make the same prediction, which is
simply the mean of the response values for the training observations in Rj .

Advantages of using tree-based models:

i) Trees are very easy to explain to people.

ii) Some believe that decision trees more closely mirror human decision-making.

iii) Trees can be displayed graphically, and are easily interpreted even by a non-expert.

iv) Trees can easily handle qualitative predictors without the need to create dummy variables.

16.1.2 Trees Versus Linear Models
8.1 The Basics of Decision Trees 315
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FIGURE 8.7. Top Row: A two-dimensional classification example in which
the true decision boundary is linear, and is indicated by the shaded regions.
A classical approach that assumes a linear boundary (left) will outperform a de-
cision tree that performs splits parallel to the axes (right). Bottom Row: Here the
true decision boundary is non-linear. Here a linear model is unable to capture
the true decision boundary (left), whereas a decision tree is successful (right).

8.1.4 Advantages and Disadvantages of Trees

Decision trees for regression and classification have a number of advantages
over the more classical approaches seen in Chapters 3 and 4:

! Trees are very easy to explain to people. In fact, they are even easier
to explain than linear regression!

! Some people believe that decision trees more closely mirror human
decision-making than do the regression and classification approaches
seen in previous chapters.

! Trees can be displayed graphically, and are easily interpreted even by
a non-expert (especially if they are small).

! Trees can easily handle qualitative predictors without the need to
create dummy variables.

Figure 16.2: (Figure from [43].) Top Row: A two-dimensional classification example in which the
true decision boundary is linear, and is indicated by the shaded regions. A classical
approach that assumes a linear boundary (left) will outperform a decision tree that
performs splits parallel to the axes (right). Bottom Row: Here the true decision
boundary is non-linear. Here a linear model is unable to capture the true decision
boundary (left), whereas a decision tree is successful (right).
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Regression and classification trees have a very different flavor from the more classical approaches
for regression presented in 6. In particular, linear regression assumes a model of the form

f(X) = β0 +
p∑
j=1

Xjβj ,

whereas regression trees assume a model of the form

f(X) =
M∑
m=1

cm · 1X∈Rm

where R1, . . . , RM represent a partition of feature space. The efficacy of the two models depend on
the problem at hand, as illustrated by Figure 16.2

16.2 Interface
The interface of the decision tree functionality includes two functions, tree_train and tree_predict,
described below.

16.2.1 Training

1: SELECT tree_train(
2: training_table_name,
3: output_table_name,
4: id_col_name,
5: dependent_variable,
6: list_of_features,
7: list_of_features_to_exclude,
8: split_criterion,
9: grouping_cols,

10: weights,
11: max_depth,
12: min_split,
13: min_bucket,
14: surrogate_params, -- not implemented
15: pruning_params,
16: verbose
17: )

Arguments:

• training_table_name: Name of the table containing data.

• output_table_name: Name of the table to output the model.

• id_col_name: Name of column containing the id information in training data.

• dependent_variable: Name of the column that contains the output for training. Boolean, inte-
ger and text are considered classification outputs, while float values are considered regression
outputs.

• list_of_features: List of column names (comma-separated string) to use as predictors. Can
also be a ‘*’ implying all columns are to be used as predictors (except the ones included in
the next argument). Boolean, integer, and text columns are considered categorical columns.
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• list_of_features_to_exclude: OPTIONAL. List of column names (comma-separated string)
to exlude from the predictors list.

• split_criterion: OPTIONAL (Default = ‘gini’). Various options to compute the feature to
split a node. Available options are ‘gini’, ‘cross-entropy’, and ‘misclassification’ for classifica-
tion. For regression tree, the input for argument is ignored and the split_criterion is always
set to ‘mse’ (mean-squared error).

• grouping_cols: OPTIONAL. List of column names (comma-separated string) to group the
data by. This will lead to creating multiple decision trees, one for each group.

• weights: OPTIONAL. Column name containing weights for each observation.

• max_depth: OPTIONAL (Default = 10). Set the maximum depth of any node of the final
tree, with the root node counted as depth 0.

• min_split: OPTIONAL (Default = 20). Minimum number of observations that must exist
in a node for a split to be attempted.

• min_bucket: OPTIONAL (Default = minsplit/3). Minimum number of observations in any
terminal node. If only one of minbucket or minsplit is specified, minsplit is set to minbucket*3
or minbucket to minsplit/3, as appropriate.

• n_bins: OPTIONAL (Default = 100) Number of bins to use during binning. Continuous-
valued features are binned into discrete bins (per the quantile values) to compute split bound-
aries. This global parameter is used to compute the resolution of the bins. Higher number of
bins will lead to higher processing time.

• surrogate_params: (Not implemented) OPTIONAL (String with multiple key-value parame-
ters, default = NULL)

i) max_surrogate: OPTIONAL (Default = 0) The number of surrogate splits retained in
the output. If this is set to zero the compute time will be reduced by half.

• pruning_params: OPTIONAL (String with multiple key-value parameters, default = NULL)
i) cp: OPTIONAL (Default = 0) A complexity parameter that determines that a split is

attempted only if it decreases the overall lack of fit by a factor of ‘cp’.
ii) n_folds: OPTIONAL (Default = 0; no cross-validation) Number of cross-validation folds

• verbose: OPTIONAL (Default = False) Prints status information on the splits performed and
any other information useful for debugging.

16.2.2 Prediction

1: SELECT tree_predict(
2: tree_model,
3: new_data_table,
4: output_table,
5: type
6: )

Arguments:
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• tree_model: Name of the table containing the decision tree model.

• new_data_table: Name of table containing prediction data.

• output_table: Name of table to output prediction results.

• type: OPTIONAL (Default = ‘response’). For regression trees, ‘response’, implies output is
the predicted value. For classification trees, this can be ‘response’, giving the classification
prediction as output, or ‘prob’, giving the class probabilities as output (for two classes, only a
single probability value is output that corresponds to the first class when the two classes are
sorted by name; in case of more than two classes, an array of class probabilities (a probability
of each class) is output).

16.3 CART
CART stands for Classification and Regression Trees ([13]). It is characterized by the fact that
it constructs binary trees, namely each internal node has exactly two outgoing edges. The splits
can be selected using any of the impurity metrics criteria and the obtained tree is pruned by
cost-complexity pruning.

16.3.1 Impurity metrics
9.2 Tree-Based Methods 309
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FIGURE 9.3. Node impurity measures for two-class classification, as a function
of the proportion p in class 2. Cross-entropy has been scaled to pass through
(0.5, 0.5).

impurity measure Qm(T ) defined in (9.15), but this is not suitable for
classification. In a node m, representing a region Rm with Nm observations,
let

p̂mk =
1

Nm

∑

xi∈Rm

I(yi = k),

the proportion of class k observations in node m. We classify the obser-
vations in node m to class k(m) = arg maxk p̂mk, the majority class in
node m. Different measures Qm(T ) of node impurity include the following:

Misclassification error: 1
Nm

∑
i∈Rm

I(yi != k(m)) = 1− p̂mk(m).

Gini index:
∑

k "=k′ p̂mkp̂mk′ =
∑K

k=1 p̂mk(1− p̂mk).

Cross-entropy or deviance: −∑K
k=1 p̂mk log p̂mk.

(9.17)
For two classes, if p is the proportion in the second class, these three mea-
sures are 1 − max(p, 1 − p), 2p(1 − p) and −p log p − (1 − p) log (1− p),
respectively. They are shown in Figure 9.3. All three are similar, but cross-
entropy and the Gini index are differentiable, and hence more amenable to
numerical optimization. Comparing (9.13) and (9.15), we see that we need
to weight the node impurity measures by the number NmL

and NmR
of

observations in the two child nodes created by splitting node m.
In addition, cross-entropy and the Gini index are more sensitive to changes

in the node probabilities than the misclassification rate. For example, in
a two-class problem with 400 observations in each class (denote this by
(400, 400)), suppose one split created nodes (300, 100) and (100, 300), while

Figure 16.3: (Figure obtained from [38]) Node impurity measures for two-class classification, as
a function of the proportion p in class 2. Cross-entropy has been scaled to pass
through (0.5, 0.5).

The measures developed for selecting the best split are often based on the degree of impurity of
the child nodes. The smaller the degree of impurity, the more skewed the class distribution. For
example, a node with class distribution (0, 1) has zero impurity, whereas a node with uniform class
distribution (0.5, 0.5) has the highest impurity. Examples of impurity measures include

• Cross-entropy: −
C∑
i=1

p(i|A) log2 p(i|A)
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• Gini: 1−
C∑
i=1

(p(i|A))2

• Classification error: 1− max
i∈1...C

p(i|A),

where C is the number of classes and p(i|A) denotes the proportion of records belonging to class i
at a given node A.

Figure 16.3 compares the values of the impurity measures for binary classification problems.
p refers to the fraction of records that belong to one of the two classes. Observe that all three
measures attain their maximum value when the class distribution is uniform (i.e., when p = 0.5).
The minimum values for the measures are attained when all the records belong to the same class
(i.e., when p equals 0 or 1).
A split for a node is computed by how much ‘impurity’ is reduced by that split. For example,

if we use the Gini index for selecting the split, we obtain the best binary split (D1 and D2) that
maximizes the Gini gain as,

Ggini(D;D1, D2) = g(D)−
( |D1|
|D|

g(D1) + |D2|
|D|

g(D2)
)
,

where g(D) is the Gini impurity metric.
For ordered, continuous attributes, we create splits of the form Xi < v, where Xi is an attribute

and v is a value in the domain of Xi, allowing possibly infinite such splits. To reduce the computa-
tional load, we compute quantile boundaries of the attribute and test for splits on these boundary
values.
For categorical attributes, we create splits of the form Xi ∈ {v1, v2, v3, . . .}, where {v1, v2, v3, . . .}

is a subset of all possible values of the categorical attribute. For ordered, categorical attributes
(integer input), the split points are obtained by sorting the categorical values and each increasing
subsequence is then used as a possible subset for the split. For unordered, categorical attribute,
the values are sorted by the entropy of the target variable. In the case of binary classification, this
implies that values are sorted by the proportion of labels of the primary class. For multinomial

classification, we sort by the entropy of each label i.e. we compute −
C∑
i=1

p(i|Xi = v) log2 p(i|Xi = v)

for each value (v) of the attribute (Xi) and sort in increasing order. The splits are then obtained
by evaluating each increasing subsequence of this sorted list.

16.3.2 Stopping Criteria

The growing phase continues until a stopping criterion is triggered. The following conditions are
some of the stopping rules used:

• All instances in the training set belong to a single value of target variable.

• The maximum tree depth has been reached (max_depth).

• The number of cases in the terminal node is less than the minimum number of cases for parent
nodes (min_split).

• If the node were split, the number of cases in one or more child nodes would be less than the
minimum number of cases for child nodes (min_bucket).
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16.3.3 Missing data

(Note: Not implemented in the initial version.)
Suppose our data has some missing predictor values in some or all of the variables. We might

discard any observation with some missing values, but this could lead to serious depletion of the
training set. Alternatively we might try to fill in (impute) the missing values, with say the mean
of that predictor over the nonmissing observations. For tree-based models, there are two better
approaches. The first is applicable to categorical predictors: we simply make a new category for
“missing”. From this we might discover that observations with missing values for some measurement
behave differently than those with nonmissing values. The second more general approach is the
construction of surrogate variables. When considering a predictor for a split, we use only the
observations for which that predictor is not missing. Having chosen the best (primary) predictor
and split point, we form a list of surrogate predictors and split points. The first surrogate is the
predictor and corresponding split point that best mimics the split of the training data achieved by
the primary split. The second surrogate is the predictor and corresponding split point that does
second best, and so on. When sending observations down the tree either in the training phase or
during prediction, we use the surrogate splits in order, if the primary splitting predictor is missing.
Surrogate splits exploit correlations between predictors to try and alleviate the effect of missing
data. The higher the correlation between the missing predictor and the other predictors, the smaller
the loss of information due to the missing value.
The resemblance between two binary splits over sample S is formally defined as:

sim(ai, dom1(ai), dom2(ai), aj , dom1(aj), dom2(aj), S) =
|σai∈dom1(ai)andaj∈dom1(aj)S|+ |σai∈dom2(ai)andaj∈dom2(aj)S|

16.3.3.1 Implementation considerations

For implementing surrogates the following should be considered:

i) Training surrogates: There are two options to consider for training of surrogates for each
split:
a) Compute surrogates after the whole tree has trained. Advantage: the increase in training

time will be equivalent to increasing number of iterations by one. Disadvantage: we won’t
have surrogates for a level while training the sub-levels. Hence, all rows with NULL will
be ignored during the training.

b) Compute surrogates splits for a node while that node is being trained. Advantage:
during training, we have surrogate splits for all nodes above the current trained level,
implying that features with NULL rows are ignored only while training nodes that use
that feature - all nodes below will still get to use that row. Disadvantage: the training
doubles, since every iteration will have to first train the nodes in level, and then compute
the surrogates for that node.

ii) Storage for surrogates: We store an array of surrogate variables and their corresponding split
thresholds for each node. In abstract, all the surrogates would be stored as two matrices: one
for each surrogate feature index and another for corresponding threshold.

iii) Update to search using surrogates: During searching the tree for a incoming tuple we go
through the tree as usual. If for a node, the feature to check is NULL in the tuple, we go
through the surrogate splits. If at least one of the surrogate split features has a non-NULL
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value, we use it search further. If an observation is missing all the surrogates we use the
majority branch to search further.

iv) Displaying surrogate splits: we can display the surrogate splits for each split in a separate
table - this can implemented as a function call for the user. The table would have a row for
each node, with a column for each surrogate split variable. Along with the surrogate split we
also display the aggrement measure that indicates how similar the two splits are.

It’s important to note that, similar to the ‘rpart’ package, no surrogate that does worse than
“go with the majority” is printed or used. The “go with the majority” rule, also referred to as the
“blind” rule computes the agreement measure when we always go with the branch that has majority
of the tuples. Computing this blind rule measure is easy since we already have the statistics of
tuples going left and right from our previous training of the node.

16.3.4 Pruning

See [38] for details on various theoretical explanations in this section.
We use the same method used by R’s rpart package to prune the tree. The method is a little

different from what is normally described in textbooks.
It is often observed that a decision tree perfect on the training set, will have a worse generalization

ability than a tree which is not-so-good on the training set; this is called overfitting which may
be caused by the fact that some peculiarities of the training data, such as those caused by noise in
collecting training examples, are misleadingly recognized by the learner as the underlying truth. To
reduce the risk of overfitting, a general strategy is to employ pruning to cut off some tree branches
caused by noise or peculiar- ities of the training set. Pre-pruning tries to prune branches when the
tree is being grown, while post-pruning re-examines fully grown trees to decide which branches
should be removed. When a validation set is available, the tree can be pruned according to the
validation error: for pre-pruning, a branch will not be grown if the validation error will increase
by growing the branch; for post-pruning, a branch will be removed if the removal will decrease the
validation error.
To perform pruning, we define a misclassification (resubstitution) error of the tree, which is the

number of misclassified entries for a classification tree and the mean-squared error for a regression
tree. We can estimate this error or risk (R∗) for classification tree as,

R∗(T ) =
∑
t∈T̃

r(t)p(t), (16.3.1)

where p(t) is the proportion of points in terminal node t (member of terminal nodes set T̃ ) and
r(t) is the probability of making wrong classification for points in node t. For a point in a given
leaf node t, the estimated probability of misclassification is 1 minus the probability of the majority
class in node t based on the training data.
For a regression tree this would be estimated as

R∗(t) =
∑
t∈T̃

V ar(t),

where V ar(t) is the variance of the dataset assigned to node t.
It is easy to prove that the resubstitution error rate R(T ) is biased downward, i.e. it tends to

produce bigger trees. Hence, we need to add a complexity penalty to this resubstitution error rate.
The penalty term favors smaller trees, and hence balances with R(T ).
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For any subtree T < Tmax , we will define its complexity as |T̃ |, the number of terminal or
leaf nodes in T . Let α ≥ 0 be a real number called the ‘complexity parameter’ and define the
cost-complexity measure Rα(T ) as

Rα(T ) = R(T ) + α|T̃ | ·R(T1), (16.3.2)
where R(T1) is the risk computed for the tree with only one root node. Note that textbooks

usually do not have R(T1) in the definition of the cost-complexity. According to the R package
’rpart’, the above scaled version is unitless and thus much more user friendly than the original
CART formular where there is no R(T1).

Because we are using this scaled version, we can simplify the computation of risk in the case of
classification Eq. (16.3.1). In Eq. (16.3.1), we have r = nmis/n and p = n/N , where nmis is the
number of mis-classified records, n is the number records classified into the current node and N is
the total number of records. Clearly in Eq. (16.3.2), we can directly use nmis instead of r × p.

When there is a weight for each record, we should use weight in the calculation. For example,
nmis should be replaced by the sum of weights of the mis-classified records.
There is some logic in rpart’s code that is not described anywhere. We try to give more detailed

explanation here.
(1) For a node i, we compute the risk of this node ri, and the total risk si of all nodes in the

subtree where the node i is the root node and not included in the subtree. The number of splits
in subtree-i is mi = mi,left +mi,right + 1. Here the subscript "left" and "right" denote the left and
right child of node i. Another important quatity is the cost-complexity itself ci.

(2) Instead of directly applying Eq. (16.3.2), we use the following logic: For a node, we compute
the average improvement per split in the subtree of node i.

t̄ = ri − si,left − si,right
mi

. (16.3.3)

If t̄ > ci,right > ci,left, the improvement at this split is more important than the splits in the sub-
tree, since we already keep the nodes in the sub-tree, we must keep the current split. Thus, we
re-compute the average improvement as the following

t̄ = ri − ri,left − si,right
mi,right + 1 . (16.3.4)

And then if t̄ > ci,right, we need to do the same thing and update

t̄ = ri − ri,left − ri,right. (16.3.5)

And when t̄ > αR(T1), we keep the split.
We use a similar method if instead t̄ > ci,left > ci,right, then we first deal with the right child,

and then deal with the left child.
(3) We recursively call the function of pruning. The question is when we stop. We stop when the

current node under examination is a leaf node, or the risk is smaller than the threshold α×R(T1)
(no change can make the improvement larger than this threshold). However, rpart uses a fairly
complicated method to estimate the risk that is used to compare with the threshold. See the code
for more details.
At the end, the cost complexity measure comes as a penalized version of the resubstitution error

rate. This is the function to be minimized when pruning the tree. In general, given a pre-selected
α, we can find the subtree T (α) that minimizes Rα(T ). Since there are at most a finite number of
subtrees of Tmax, Rα(T (α)) yields different values for only finitely many α’s. T(α) continues to be
the minimizing tree when α increases until a jump point is reached.
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16.3.5 Cross-validation with the cost-complexity

The starting point for the pruning is not Tmax, but rather T1 = T (0), which is the smallest subtree
of Tmax satisfying R(T1) = R(Tmax).
First, look at the biggest tree, Tmax, and for any two terminal nodes descended from the same

parent, for instance tL and tR, if they yield the same resubstitution error rate as the parent node
t, prune off these two terminal nodes, that is, if R(t) = R(tL) + R(tR), prune off tL and tR. This
process is applied recursively. After we have pruned one pair of terminal nodes, the tree shrinks a
little bit. Then based on the smaller tree, we do the same thing until we cannot find any pair of
terminal nodes satisfying this equality. The resulting tree at this point is T1.
We now find the next α using the following method. The new α will result in a different optimal

subtree.
For any node t ∈ T1, we can set Rα(t) = R(t) + α, and for the subtree starting at t, we can

define Rα(Tt) = R(Tt) + α|T̃t|. When α = 0, R0(Tt) < R0(t), but when α increases there is a point
at which Rα(Tt) = Rα(t). We compute this exact alpha value by minimizing the function

g1(t) =


R(t)−R(Tt)
|T̃t|−1 , if t /∈ T̃1

∞, if t ∈ T̃1.

We find the weakest link t̄1 ∈ T1 that achives the minimum of g1(t) and set the new α2 = g1(t).
To get the optimal subtree T2, simply remove the branch growing out of t̄1. If there are several
nodes that simultaneously achieve the minimum g1(t), we remove the branch grown out of each of
these nodes. We repeat this process till we end up with only the root node i.e. a single-split tree.
To find which of the multiple optimal subtrees is the best one, we can run cross-validation for the

optimal subtree of each α to obtain an average test resubstitution error for each optimal subtree
and pick the one with the lowest error.

16.4 Parallelism
Let X = {X1, X2, . . . , XN} be a set of attributes with domains DX1 , DX2 , . . . , DXN . Let Y be an
output with domain DY . Given a dataset D∗ = {(xi, yi)|xi ∈ DX1 × DX2 × . . . DXN , yi ∈ DY },
the goal is to learn a tree model that best approximates the true distribution of D∗. However,
finding the optimal tree is a NP-Hard problem, thus most decision tree construction algorithms use
a greedy top-down approach as described in Algorithm BuildSubtree.

Algorithm BuildSubtree(n,D)
Input: Node n, Data D ∈ D∗
Output: A Decision Tree Model
1: (n→ split,DL, DR) = FindBestSplit(D)
2: if StoppingCriteria(DL) then
3: n→ left_prediction = FindPrediction(DL)
4: else
5: BuildSubtree(n→ left, DL)
6: if StoppingCriteria(DR) then
7: n→ right_prediction = FindPrediction(DR)
8: else
9: BuildSubtree(n→ right, DR)
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Note that the each call of Algorithm BuildSubtree requires at lease one pass over the datasetD∗,
which means that the number of passes needed for training a depth l tree is O(2l). The node-wise
training incurs IO cost that is exponential to tree depth which does not scale to large dataset.
To scale to large dataset, in our algorithm, we perform level-wise training strategy as proposed

in [58]. With each pass over the training dataset, we find best splits for all nodes at the same level.
Moreover, to reduce search space in finding best splits, we construct equal-depth binning for each
attributes and only consider bin boundaries as split candidates. In what follows, we will describe
details of each step in level-wise decision tree training algorithm. The following assumptions hold
in the level-wise training algorithm.

1. The tree model can fit in memory

2. Dataset is distributed over multiple machines

16.4.1 Initialization

In the initialization step, we find split candidates by equal-depth binning on each attribute. For
continuous attributes, on large distributed datasets, we perform a quantile calculation over a sam-
pled fraction of the data to get an approximation set of split candidates. The ordered splits create
bins and the maximum number of such bins can be specified by user. Note that the number of bins
cannot be greater than the number of training examples. The tree algorithm automatically reduces
the number of bins if the condition is not satisfied.
For M categorical attributes and binary classification, the number of split candidates can be

reduced to M − 1 by ordering the categorical attribute values by the proportion of labels falling in
one of the two classes. For example, for a binary classification problem with one categorical feature
with three categories A, B and C with corresponding proportion of label 1 as 0.2, 0.6 and 0.4,the
categorical features are ordered as A followed by C followed by B. The two split candidates are
A|C,B and A,C|B where | denotes the split. For categorical variables in multiclass classification,
each bin is a category. The bins are sorted and they are ordered by calculating the impurity of
their corresponding labels.
Algorithm findSplitBins describes binning for CART.

Algorithm findSplitBins(D∗,MB)
Input: Training dataset D∗, max bins for each feature MB
Output: A equal-depth binning for each attributes in D
1: if MB < |D∗| then
2: numBins = MB
3: else
4: numBins = |D∗|
5: if numBins ∗ numBins < |D∗| then
6: Sample fraction f = numBins ∗ numBins/|D∗|
7: else
8: Sample fraction f = 1.0
9: Randomly select f |D∗| records R from D∗ and load R into memory

10: for all attr in D∗ do
11: if attr is continuous then
12: sort R by attr, perform quantile computation
13: else
14: if binary classification then
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15: compute centroid of labels for each value in attr
16: sort attr by centroid
17: else
18: compute impurity for each label for each value in attr
19: sort attr by impurity

16.4.2 Find best splits

For a particular split node, we want to find an attribute that maximizes purity. In classification,
we use Gini impurity and entropy as our impurity measure and in regression, we use variance as
the impurity measure.
For classification, we need to compute the frequency fi for label i at each node to compute Gini

impurity and entropy.
For regression, we need to compute

Var(D) = 1
n

∑
i

y2
i −

(
1
n

∑
i

yi

)

where yi is value for attribute Y and n is the number of examples in D. One important observation
is that both label frequency and variance can be computed from sufficient statistics.
For label frequency, the sufficient statistics we aggregate when passing over the training examples

are

• The number of examples with label i, Ni =
∑
i I(i)

For variance, the sufficient statistics we aggregate when passing over the training examples are

• The number of training N =
∑
i 1

• The sum of values S =
∑
i yi

• The sum of square values Q =
∑
i y

2
i

Note that the computations of the above sufficient statistics are associative, we then have the
following high level algorithm for parallel decision tree construction. Assume that we are training
nodes at level l, in each segment, we store the aggregated values for sufficient statistics that we
need to compute purity. As we pass over each record r in each segment, we find the corresponding
bin for each attributes in r and add to the aggregated statistics. When all segments finish data
processing, the aggregated sufficient statistics will be merged. Once we have the overall aggregated
sufficient statistics, we find the split that maximizes impurity for each node at the level l.

Algorithm findBestSplits(D∗,M, nl, B)
Input: Training dataset D∗,

Tree model M ,
Set of nodes at level l, nl, Binning info B

Output: split that maximizes impurity for each node in nl
1: On each segment, perform the following . Transition function
2: for d ∈ D∗ do
3: for attr_value ∈ d do
4: Find the bin index in B that attr_value belongs to
5: Add sufficient statistics s to aggregate
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6: Merge aggregated statistics on different segments . Merge function
7: Find splits that maximize impurity for each node in nl . Final function

For Algorithm findBestSplits to handle weights for each training example, when we add sufficient
statistics s to aggregate, we instead add w × s to aggregage, where w is the weight for the traning
example.
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History v0.1 Initial version: introduction, theory, and interface

17.1 Introduction
Tree-based methods provide a simple and human-interpretable model for classifying data. Decision
Trees, for example, use splitting rules to segment the predictor space into simple regions that
are then summarized in a tree form. However, they tend to over-fit the data, resulting in poor
prediction accuracies. One way to mitigate this problem is by building an ensemble of classifiers,
each of which produces a tree model on some combination of the input data. The results of these
models are then combined to yield a single prediction, which, although at the expense of some loss
in interpretation, have been found to be highly accurate. Such methods of using multiple decision
trees to make predictions are called random forest methods.

17.1.1 Basics of Random Forests

Random forests operate by constructing many trees at training time using bootstrapped samples
from the training data. During prediction, they output the class that is the mean (regression) or
mode (classification) of the predictions output by the individual trees.

Each tree is grown as follows:

i) If the number of training samples is N, we sample, with replacement, N cases at random.
This forms the training set for the current tree.

ii) Each time a split is considered, a random sample of m predictors is chosen as split candidates
from the full set of p predictors such that m� p. Typically, we choose m ≈ √p. One of the
m predictors is then used to split the node.

iii) The tree is grown to the maximum size without pruning.

[10] proves that the generalization error, or the misclassification rate, has a limiting value and
that, random forests do not over-fit the data.

17.1.2 Out-of-bag error (oob) error estimate

The Out-of-bag error is an unbiased estimate of the test set error. While growing each tree during
training, about one-third of the samples are left out. These are used to get a test-set classification for
each sample in about one-third of the trees. The average prediction c for each sample is calculated
as the average of the predictions output by individual trees. The number of times c is not equal
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to the true class of the sample, averaged over all the samples, is the oob error estimate. Such an
unbiased error estimate removes the need for cross-validation or a separate test set for calculating
test set error.

17.1.3 Variable importance

Random forests can be used to rank the importance of variables in the dataset. For a given dataset
Dn = {(Xi, Yi)}ni=1, first, a random forest is fit to the data. To measure the importance of the
j-th feature after training, the values of the j-th feature are permuted among the training data,
and the oob error is calculated on this perturbed dataset. The importance of the j-th feature is
calculated by averaging the difference between the oob error estimate before and after permuting
the j-th feature. The average is normalized by the standard deviations of the differences.

17.1.4 Proximities

Proximity matrices are a useful tool in clustering and outlier detection. Random forests can be
used to calculate pair-wise proximities between input samples. If there are N training samples, the
proximity matrix is created as an NxN matrix. After a tree is grown, both the training and oob
data are sent down the tree. If two different samples end up in the same leaf node, their proximity is
increased by one. After repeating this process for all samples, the proximity values are normalized
by diving by the number of trees.

Advantages of Random forests:

i) It is one of the most accurate learning algorithms available. For many data sets, it produces
a highly accurate classifier.

ii) It runs efficiently on large databases.

iii) It can handle thousands of input variables without variable deletion.

iv) It gives estimates of what variables are important in the classification.

v) It generates an internal unbiased estimate of the generalization error as the forest building
progresses.

vi) It has an effective method for estimating missing data and maintains accuracy when a large
proportion of the data are missing.

vii) It computes proximities between pairs of cases that can be used in clustering, locating outliers,
or (by scaling) give interesting views of the data.

viii) The capabilities of the above can be extended to unlabeled data, leading to unsupervised
clustering and outlier detection. Proximity matrix calculated from the random forest for
unlabeled data can be used for clustering and outlier detection.

17.2 Interface
The interface to the random forest functionality includes forest_train and forest_predict as the
training and prediction functions, and forest_display as the visualization function.
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17.2.1 Training

1: SELECT forest_train(
2: training_table_name,
3: output_table_name,
4: id_col_name,
5: dependent_variable,
6: list_of_features,
7: list_of_features_to_exclude,
8: grouping_cols,
9: num_max_trees,
10: num_random_features,
11: max_depth,
12: min_split,
13: min_bucket,
14: verbose
15: )

Arguments: The descriptions of the arguments are the same as found in Decision Trees with the
exception of the following:

• num_max_trees: Maximum number of trees to grow while building the random forest. De-
fault: 500

• num_random_features: Number of features to randomly select at each split. Default=√p
for classification, and p/3 for regression, where p is the total number of features.

• There will be no parameters for cross-validation and pruning as random forests build complete
trees without pruning, and the technique of cross-validation is inherent.

17.2.2 Prediction

1: SELECT forest_predict(
2: random_forest_model,
3: new_data_table,
4: output_table,
5: type
6: )

The descriptions of all the arguments are the same as found in Decision Trees.

17.2.3 Training Output

The function forest_train produces three output tables, one each for the model, summary and
groups, as described below:

Model table: The structure of the model table remains mostly similar to the one constructed by
Decision trees. For Random forests, we provide two additional fields: ’sample_id’ and ’group_id’.
sample_id refers to the id of the bootstrap sample, which is a number ranging from 1 to num_trees,
where num_trees is the number of trees that were actually grown. group_id is an integer assigned
to each unique combination of values of grouping columns. As one can see, a tree can uniquely be
identified by using the sample_id as well as particular values for the grouping columns. To make
it easier for the user to retrieve a tree, we assign a group_id instead of the user having to list all
grouping columns and their values. The total number of trees in the model table will be equal to
the number of groups multiplied by the number of bootstrap samples.
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• group_id: If grouping columns were provided, this refers to the Id of the group for which
this tree was generated. The specific grouping columns and values can be obtained from the
’Groups’ table.

• sample_id: Id of the (bootstrap) sample for which this tree was generated.

• tree: Trained decision tree model stored in bytea8 format.

• cat_levels_in_text: Ordered levels of categorical variables.

• cat_n_levels: Number of levels for each categorical variable.

• tree_depth: Depth of the tree.

Summary table: This table stores details that are common across all random forest models
created by the training function.

• method_name: Name of training method, ’forest_train’ in this case.

• is_classification: Indicates if the model is for classification/regression.

• training_table_name: Name of table containing training data.

• output_table_name: Name of table containing the model.

• id_col_name: The Id column name.

• dependent_variable: The dependent variable.

• features: The independent variables.

• cat_features_str : The list of categorical feature names as a comma-separated string.

• con_features_str : The list of continuous feature names as a comma-separated string.

• grouping_cols_str : Names of grouping columns.

• n_groups: Number of groups in training.

• failed_groups: Number of failed groups in training.

• n_rows: Total number of rows processed across all groups.

• n_rows_skipped: Total number of rows skipped across groups.

• dep_list_str : Distinct levels of dependent variable in the case of classification.

• dep_type: Type of dependent variable.
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Groups table: This table stores statistics on a per-group basis. It has one row for each group
(which in turn corresponds to the random forest model for that group).

• grouping_cols: Zero or more grouping columns depending upon user input.

• group_id: If grouping columns were provided, this refers to the Id of the group that this row
of statistics corresponds to.

• num_trees: Actual number of trees constructed by the model. This should usually be the
same as num_max_trees, but we could optimize the implementation to limit the number of
trees to grow based on the observed oob error during construction of the random forest model
for each group.

• oob_error : Out-of-bag error estimate for the model.

• variable_importance: A matrix containing the permutation-based importance measures. The
rows correspond to the different predictors, and the columns correspond to various importance
measures. Importance measures include Mean Decrease in MSE (for regression) and Mean
Decrease in Classification Accuracy for classification. Additionally, we may be able to add
Mean Decrease in Gini criterion for classification.

• proximity: A matrix containing proximity measures among the input, based on the number
of times pairs of input points end up in the same terminal node. Note that this feature being
Priority 2, will not be available in the first iteration.

17.2.4 Prediction Output

The function forest_predict produces one output table containing a list of predictions, which are
either class probabilities, or classification prediction outputs. In the case of classification with
multiple classes, an array of class probabilities are produced as output. The output table is as
described below:

• id: Id of the data point.

• estimated_<column>: Contains prediction for this data point. Can be one (regression) or
more columns(classification).

17.2.5 Other functions

17.2.5.1 Display

1: SELECT forest_display(
2: random_forest_model,
3: group_id,
4: sample_id,
5: is_dot_format)

• random_forest_model: Table containing the random forest model.

• group_id: Id of the group that the tree to be displayed is a part of.

• sample_id: Id of the sample within the group.

• is_dot_format: True for dot format, False for text format.
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The output of the display function to output individual trees will follow the same format as used
by Decision Trees.

17.3 Implementation
Let X = {X1, X2, . . . , XN} be a set of attributes with domains DX1 , DX2 , . . . , DXN . Let Y be an
output with domain DY . Given a dataset D∗ = {(xi, yi)|xi ∈ DX1 ×DX2 × . . . DXN , yi ∈ DY }, the
goal is to learn a random forest model that best approximates the true distribution of D∗. The
random forest will be composed of individual trees each of which is learnt using a greedy top-down
approach, as described in Decision Trees.
In the below sections, we will only expand item[1] and item[5], which are specific to building

random forests. The others have already been covered in Decision Trees. Any differences will be
noted along in the process.
The following are the major steps for building a random forest model:

1. Bootstrap, which includes sampling N samples from the training set.

2. Initialize, which includes binning and finding split candidates.

3. Finding best split for each node.

4. Finding prediction for leaf nodes in the individual decision trees.

5. Calculate random forest statistics.

17.3.1 Bootstrapping

Given the dataset D∗ = {(xi, yi)|xi ∈ DX1 × DX2 × . . . DXN , yi ∈ DY } we will generate B boot-
strap samples B1, B2, . . . Bb where each bootstrap sample is obtained by sampling N times, with
replacement, from the same dataset. Each bootstrapped sample Bi is treated as the training set
for BuildRandomForest. We thought about a couple of approaches for achieving this:

17.3.1.1 Using Row Identifiers

The first method generates row ids for each row of the input table, which ranges from 1..N. We
then generate N random numbers between 1 and N, and store the results in a one-column table.
A bootstrapped sample can now be obtained by joining this table with the input dataset. See 2.2
for implementing this in sql. The problem, however, is that, the step which generates row ids for
the input table would involve pulling in data from all segments to the master in order to be able
to generate a sequential gap-less set of ids. This is an expensive operation which is overcome by
the second method.

17.3.1.2 Using Poisson sampling

The process of bootstrapping can be thought of as sampling from a multinomial distribution where
the probability of selecting any data point is uniform over the entire data set. While this requires
scanning the entire data set, the second approach approximates the multinomial distribution by
sampling from an identical Poisson distribution on each data point independently. Thus, we are able
to generate counts indicative of the number of times the particular data point should be included
in the bootstrap sample.
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It has been decided that we will be using Poisson sampling for our bootstrapping step. We will
use a Poisson distribution with λ = 1 where λ is the average fraction of input data that we want in
each tree. In our case, this fraction = 1 as we want N samples in each tree from the input where
N is also the size of the data set.

Algorithm Bootstrapping(D∗)
Input: Training dataset D∗
Output: Bootstrap sample B
1: for d ∈ D∗ do
2: count = Poisson(1)
3: id = user provided id for d
4: Add (count, id) to C where C is a two-column table
5: Output Join(D∗, C)

17.3.2 Variable Importance

“Subtract the number of votes for the correct class in the variable-m-permuted oob data from the
number of votes for the correct class in the untouched oob data.” [14] According to the source code
of R package randomForest [15], we define the normalization of the subtraction,

Dm,g,t,p =

(∑
n∈oobt,g predict(n) == yn

)
−
(∑

n∈oobt,g predictmp (n) == yn
)

oobsizet,g
.

For regression,

Dm,g,t,p =

[∑
n∈oobt,g

(
predictmp (n)− yn

)2
]
−
[∑

n∈oobt,g (predict(n)− yn)2
]

oobsizet,g
.

“The average of this number over all trees in the forest is the raw importance score for variable
m.” [14] Considering multiple permutations, we have

importancem,g =
P∑
p=1

T∑
t=1

Dm,g,t,p

TP

for each variable m per group g.
Note: R package randomForest [15] computes the above importance without considering grouping

support and aggregating p prior to t.
In order to rank the importance of features in the input dataset, random forests use a mechanism

of calculating the average increase in misclassification rate when the values of a particular feature
are randomly permuted in the input set, and comparing the classification accuracy against the
original data set. The algorithm is as follows:

Algorithm calculateVariableImportance(R,F ∗)
Input: Random Forest model R
Input: Features F ∗
Output: Variable importance for each feature in F
1: for subtreeTi ∈ R do
2: Oi = out-of-bag samples of Ti
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3: size = size of Oi
4: for f ∈ F do
5: Create one-column table C with values of f randomly selected size times
6: Join (Oi, C) replacing column f with values from C
7: for o ∈ Oi do
8: Find prediction for o, and increment count for (f, o, prediction)
9: Find majority prediction for each input point per feature

10: Calculate misclassification rate per feature

17.3.3 Proximities

Proximities help identify clusters within the input set. This is depicted as an NxN matrix where
N is the size of the data set. The algorithm is as follows:

Algorithm calculateProximity(R,D∗)
Input: Random Forest model R
Output: Proximity for data points in D∗

1: for subtreeTi ∈ R do
2: for d ∈ D∗ do
3: Find prediction p for d in Ti. Increment pairwise counts of d with all other data points

with prediction p.
4: Normalize proximity by dividing by number of trees.

17.3.4 Feature sampling

Unlike in decision trees where all the features are used to grow the tree, random forests will at each
split, select at random, a subset of the features to find the best split candidate. This would require
some changes in the current Decision tree implementation to both support and be able to use the
reduced feature set for an optimized implementation, by, for example, only having to aggregate
statistics for the feature subsample.

17.3.5 Random forest and Decision Tree building algorithms
Algorithm BuildRandomForest(D∗)
Input: Training dataset D∗
Output: A random forest model fit to the dataset D
1: Generate bootstrap samples B1, B2, . . . Br using Bootstrapping
2: for i ∈ Bi do
3: Generate binning info bi using findSplitBins
4: Build subtree using buildSubtreeRandomForest

Algorithm buildSubtreeRandomForest(D∗,M, nl, B)
Input: Bootstrapped training dataset Bi,

Binning info b
Output: Subtree built from Bi

1: Select m features at random from the set of p features
2: On each segment, perform the following . Transition function
3: for d ∈ Bi do
4: for attr ∈ m in d do
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5: Find the bin index in b that attr_value belongs to
6: Add sufficient statistics s to aggregate
7: Merge aggregated statistics on different segments . Merge function
8: Find split in m that maximizes impurity using findBestSplits . Final function

17.3.6 Grouping Support

Like other algorithms in MADlib, Random Forests will also support grouping. A lot of the func-
tionality that exists in Decision Trees to support grouping can be leveraged. Two major steps to
support grouping in random forests would be:

• Generate bootstrap samples for a particular group before training a random forest on that
group. See 2.2 for implementation details of sampling with replacement involving groups, in
the database.

• Aggregate necessary results on a per-group basis in order to output final statistics such as
variable importance, proximity etc.

17.4 Data Handling
In order to calculate metrics such as the oob error, variable importance and proximities, data from
all the trees need to aggregated. Three different alternatives were experimented with, w.r.t storing
and retrieving data.

i) In the first approach, we construct two tables, one that stores the bootstrap samples of the
current working set, i.e., the data needed to construct the current tree, and another table
which accumulates both the training and oob samples for all trees. Metrics are then calculated
at the end of training the random forest model by running aggregation queries on the table
with all of the data. The query to accumulate all data simply appends the current sample to
the aggregated sample.

ii) In the second approach, we store one big table, which is used for both training the current
tree, as well as accumulating samples for all trees. The overall amount of data stored is
reduced.

iii) In the final approach, we construct one table to store the current working set like in approach
(1), and additionally, we store one other table to store various partially aggregated statistics
from training each tree, such as the predictions for oob samples for each tree. These will be
aggregated at the end of training to produce the final results.

iv) Based on preliminary tests on HAWQ (with half a rack), a table with 1M rows using approach
(3) takes only half as much time as required for approaches (1) and (2)

17.5 Design Considerations
• Building a random forest can potentially be made embarrassingly parallel as each tree in the
model can be built independently of the rest. This, however, requires that each segment has
all the data necessary for training a single tree, and would involve copying large amounts of
data over to the segments, which is a lot of overhead. It has therefore been decided that
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individual trees will be built in sequence, with each tree itself being built in parallel, as
discussed under Decision Trees.

• Random forests are usually built without pruning, which could lead to trees that are very
deep. That could potentially have an impact on performance. The current design proposes
not to use pruning, but based on performance tests and accuracy results, this could be changed
to use pruning and/or limit the maximum depth of the tree.

• num_trees is currently an input parameter to the rf_train method. If, however, we want to
be able to determine the number of trees to use, one approach is to use a number that is
typically used, such as few hundreds of trees. Another way might be to observe the out-of-bag
error rate on each training sample on the current model, and stop constructing more trees
when the improvement in the error rate falls below a certain threshold.
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18 SVM

Authors

History v0.1 Initial version

Support Vector Machines (SVMs) are a commonly used technique for approaching regression
and classification problems. SVM models have two particularly desirable features: robustness in
the presence of noisy data, and applicability to a variety of data schemes. At its core, a linear
SVM model is a hyperplane separating the two distinct classes of data (in the case of classification
problems), in such a way that the margin is maximized. Using kernels, one can approximate a large
variety of decision boundaries.

18.1 Linear SVM
Suppose we have a classification task with training data (x1, y1), . . . , (xn, yn) ∈ Rd × {0, 1}. A
hyperplane in Rd is determined by w ∈ Rd and b ∈ R: x ∈ Rd is on the plane if 〈w, x〉 + b = 0.
To solve the classification problem, we seek a hyperplane which separates the data, and therefore
coefficients (w, b) ∈ Rd × R such that for all i ≤ n, yi = sgn(〈w, xi〉+ b).

The margin determined by a hyperplane and the training data is the smallest distance from a
data point to the hyperplane. For convenience, the length of w can be modified so that the margin
is equal to 1

||w|| . In addition to merely separating the data, it is desirable to find a hyperplane which
maximizes the margin; inuitively, a larger margin will lead to better predictions on future data.

The support vectors are the members of the training data whose distance to hyperplane is exactly
the margin; that is, the training points which are closest to the hyperplane. Learning with SVM
lends itself to large datasets in part because the model in depends only on these support vectors;
all other training data do not influence the final model. When assigning values to new data, one
needs only to check it against the support vectors.

Thus, we are left with the following convex programming problem:

Minimize
w,b

1
2 ||w||

2, w ∈ Rd,

subject to yi(〈w, xi〉+ b) ≥ 1 for i = 1 . . . n.

If the data are not linearly separable, slack variables ξi are introduced to allow for some points to
be classified incorrectly. We do not want to sacrifice too much to capture outliers, so we introduce
an extra term in the objective function to control the error. The optimization problem now becomes
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Minimize
w,ξ,b

1
2 ||w||

2 + C

n

n∑
i=1

ξi

subject to yi(〈w, xi〉+ b) ≥ 1− ξi, ,
ξi ≥ 0.

The parameter C is free, and should be chosen to optimize the model. One can use cross-
validation, for example, to optimize the choice of C.

18.1.1 Unconstrained optimization

One can formulate the same problem without constraints:

Minimize
w

λ||w||2 + 1
n

n∑
i=1

`(yi, f(xi)) (18.1.1)

where `(y, f(x)) = max(0, 1 − yf(x)) is the hinge loss. Also, in the case of linear SVM, f(x) =
〈w, x〉+ b (Note: there are a couple ways to handle the variable b; one can include it in the gradient
calculations, or add extra feature to the data space.) Also note that this loss function is not
smooth. However, one can solve this unconstrained convex problem using the techniques outlined
in the “Convex Programming Framework” section of this document. In particular, the subgradient
of this loss function which is used in our gradient-descent method is:

v(y, f(x)) =
{

0 1− yf(x) ≤ 0
−y · x 1− yf(x) > 0

See [65] (extended version) for details.

18.1.2 ε-Regression

SVM can also be used to predict the values of an affine function f(x) = 〈w, x〉 + b, given sample
input-output pairs (x1, y1), . . . , (xn, yn). If we allow ourselves an error bound of ε > 0, and some
error controlled by the slack variables ξ∗, it is a matter of simply modifying the above convex
problem. By demanding that our function is relatively “flat," and that it approximates the true f
reasonably, the relevant optimization problem is:

Minimize
w,ξ,ξ∗i ,b

1
2 ||w||

2 + C

n

n∑
i=1

ξi + ξ∗i

subject to yi − 〈w, xi〉 − b ≤ ε+ ξi,

〈w, xi〉+ b− yi ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0

One can also formulate ε-regression as an unconstrained optimization problem just as we did
with classification. In fact, the objective function remains the same, except rather than hinge loss
we would use the loss function
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`(y, f(x)) = max(0, |y − f(x)| − ε)

whose subgradient is

v(y, f(x)) =


x f(x)− y > ε
−x y − f(x) > ε
0 otherwise

18.2 Nonlinear SVM
One can generalize the above optimization problems using kernels. A kernel is nothing more than a
continuous, symmetric, positive-definite function k : X ×X → R. This replacement, known as the
kernel trick, allows one to compute decision boundaries which are more general than hyperplanes.

Two commonly used kernels are polynomial kernels, of the form k(x, y) = (〈x, y〉 + q)r, and
Gaussian kernels, k(x, y) = e−γ||x−y||

2 , γ a free parameter.

The approach we take to learning with these kernels, following [60], is to approximate them
with linear kernels and then apply the above gradient descent based algorithm for learning linear
kernels. The approximation takes the following form: we embed the data into a finite dimensional
feature space, z : Rd → RD, so that the inner product between transformed points approximates
the kernel:

k(x, y) ≈ 〈z(x), z(y)〉.

This map z will be a randomly generated (in a manner depending on the kernel) by methods
outlined in the papers [44, 60]. We then use z to embed both the training data and the test data
into RD and run linear SVM on the embedded data.

18.2.1 Gaussian kernels

A kernel k is said to be shift-invariant if, for all x, y, z, k(x, y) = k(x− z, y − z). In the paper [60],
the authors show that for any shift- invariant kernel k, there exists a probability measure p(w) on
its domain such that

k(x, y) = k(x− y, 0) =
∫
X
p(w)ei〈w,x−y〉dw = Ew[ei〈w,x〉e−i〈w,y〉]

where the expectation above is taken with respect to the measure p. In the particular case of
k(x, y) = exp(−γ||x− y||2),

p(w) =
( 1√

4πγ

)d
exp

(
−||w||2

4γ

)
where d is the dimension of the sample data. In other words, p(w) is a Gaussian distribution

with mean zero and standard deviation σ =
√

2γ.

Since both the kernel and the probability distribution are real-valued in the above integral, the
complex exponential can be replaced with cos(〈w, x − y〉). Define a random function z : x 7→
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√
2 cos(〈w, x〉 + b), where w is drawn from the distribution p and b uniformly from [0, 2π]. Then
〈z(x), z(y)〉 is an unbiased estimator of k(x, y) = k(x − y, 0). To see this, use the sum of angles
formula:

z(x)z(y) = 2 cos(〈w, x〉+ b) cos(〈w, y〉+ b)
= 2 cos(〈w, x〉) cos(〈w, y〉) cos2(b)
+ sin(〈w, x〉) sin(〈w, y〉) sin2(b)− sin(〈w, x〉+ 〈w, y〉) cos(b) sin(b)

Since w, b are chosen independently,

E[2 cos(〈w, x〉) cos(〈w, y〉) cos2(b)] = 2E[2 cos(〈w, x〉) cos(〈w, y〉)]E[cos2(b)]

= 2E[cos(〈w, x〉) cos(〈w, y〉)] · 1
2

= E[cos(〈w, x〉) cos(〈w, y〉)]

and similarly with the other terms. Finally,

Ew,b[z(x)z(y)] = E[cos(〈w, x〉) cos(〈w, y〉) + sin(〈w, x〉) sin(〈w, y〉)]
= E[cos(〈w, x− y〉)].

To lower the variance of our estimate, we sample several (w, b) pairs and average the resulting
values of z.

18.2.1.1 Formal Description
Algorithm Random Fourier Features
Input: Training data X, an n× d matrix representing n data points in dimension d,

γ parameter of Gaussian distribution e−γ||x||2

dimension of range space, D,
random normal generator seed

Output: X ′, an n×D dimension matrix of data in feature space to be sent to linear solver, as well as the Ω and b used to compute X ′, to be used by the predictor.
1: Ω ← d ×D matrix of samples drawn from the standard normal distribution stdnormal, then

scaled by a factor of
√

2γ to simulate a Gaussian with σ =
√

2γ (see fit function from RBF-
sampler class of scikit-learn)

2: b← vector of length D, each entry a uniform random sample from [0, 2π]
3: X ′ ← X · Ω
4: X ′ ← X ′ + b (b is added to each row)
5: X ′ ← cos(X ′) (take the cosine of each entry)
6: X ′ ←

√
2
D ·X

′

7: return X ′,Ω, b

18.2.1.2 Parallelization

Since the random cosine features are generated independently, each coordinate could be computed
independently in parallel, as long as each node has access to the distribution p.
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18.2.2 Dot product kernels

As in the case of Gaussian kernels, we can use random feature maps to approximate polynomial
kernels, k(x, y) = (〈x, y〉+ q)r. Again, the embedding takes the following simple form:

z : Rd → RD

x 7→ 1√
D

(z1(x), . . . , zD(x)).

The idea here is to choose each random features zi such that it satisfies E[zi(x)zi(y)] = k(x, y).
Then the concentration of measure phenomenon, e.g., as D goes to infinity, ensures |k(x, y) −
z(x)T z(y)| to be small with high probability. We describe the process of generating zi below. Note
that it applies to any positive definite kernel k : (x, y) 7→ f(〈x, y〉), where f admits a Maclaurin ex-
pansion, i.e., f(x) =

∑∞
N=0 aNx

N , where aN = f (N)(0)/N !. For example, in the case of polynomial
kernels k(x, y) = (〈x, y〉+ q)r, f(x) will be (x+ q)r and aN will be the N-th derivative of (x+ q)r
divided by N !.

i) Randomly pick a number N ∈ N∪ {0} with P[N ] = 1
pN+1 . Here p is a positive number larger

than 1 and in practice p = 2 is often a good choice since it establishes a normalized measure
over N ∪ {0} [44].

ii) PickN independent Rademacher vector w1, ..., wN , i.e., each component of Rademacher vector
is chosen independently using a fair coin toss from the set {−1, 1}.

iii) Compute zi(x) as follows,

zi(x) =
{√

a0p, if N = 0,√
aNpN+1∏N

j=1w
T
j x, otherwise.

(18.2.1)

The reason why we pick N from N ∪ {0} with probability P[N ] = 1
pN+1 becomes obvious in the

following simple proof. It establishes that the random feature product zi(x)zi(y) approximates the
kernel product k(x, y) with high probability for any x, y ∈ Rd, i.e., E[zi(x)zi(y)] = k(x, y):

E[zi(x)zi(y)] = EN [Ew1,...,wN [zi(x)zi(y)]|N ]

= EN [aNpN+1Ew1,...,wN [
N∏
j=1

wTj x
N∏
j=1

wTj y]]

= EN [aNpN+1(Ew[wTx · wT y])N ]
= EN [aNpN+1〈x, y〉N ]

=
∞∑
n=0

1
pn+1 · anp

n+1〈x, y〉n

= f(〈x, y〉) = k(x, y)

See the paper of Kar and Karnick [44] for more details.
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18.2.2.1 Formal Description
Algorithm Random Features for Polynomial Kernels
Input: Training data X, an n× d matrix representing n data points in dimension d,

Parameters of a polynomial kernel, i.e. degree r, dimension of linear feature space D
Output: X ′, an n×D dimension matrix of data in feature space to be sent to linear solver

Ω,N generated by the algorithm, to be used by the predictor.
1: N ← array of D entries, each generated from the exponential probability distribution 1

2N+1

2: Ω← matrix of dimensions d× sum(N ) ·D with {−1, 1} entries, chosen with a fair coin flip
3: X ′ ← X · Ω, now a matrix of dimensions n× sum(N )
4: for each row in X ′ do
5: row′ ← dividing row into D segments, with ith segment consisting of Ni number of entries.
6: row′′ ← array of D entries aggregating from each segment of row′ according to (18.2.1)
7: X ′′ ← the transformed X ′ divided by 1√

D

8: return X ′′,Ω,N

18.2.2.2 Parallelization

In the above algorithm, Step 3 is done by broadcasting the matrix Ω to each row of X, and
computing the matrix-vector product locally in parallel for each row; Similarly, Step 4 can also be
distributed since the computations for each row are independent of the others.

18.3 Novelty Detection
Suppose we have training data x1, x2, . . . xn ∈ Rd, the goal of novelty detection is to learn a
hyperplane in Rd that separates the training data from the origin with maximum margin. We model
this as a one-class classification problem by transforming the training data to (x1, y1), . . . , (xn, yn) ∈
Rd × {1}, indicating that the dependent variable of each training instance is assumed to be the
same. The origin is treated as a negative class data point and all input data points are treated
as part of the positive class. Given such a mapping, we use the SVM classification mechanisms
detailed in Sections 18.1 and 18.2 to learn a one-class classification model.
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19 Graph

Authors Orhan Kislal, Nandish Jayaram, Rashmi Raghu, Jingyi Mei, Nikhil Kak

History v0.1 Initial version, SSSP only.
v0.2 Graph Framework, SSSP implementation details.
v0.3 PageRank
v0.4 APSP
v0.5 Weakly Connected Components
v0.6 Breadth First Search (BFS)
v0.7 Hyperlink-Induced Topic Search (HITS)

This module implements various graph algorithms that are used in a number of applications such
as social networks, telecommunications and road networks.

19.1 Graph Framework
MADlib graph representation depends on two structures, a vertex table and an edge table. The
vertex table has to have a column of vertex ids. The edge table has to have 2 columns: source
vertex id, destination vertex id. For most algorithms an edge weight column is required as well.
The representation assumes a directed graph, an edge from x to y does not guarantee the existence
of an edge from y to x. Both of the tables may have additional columns as required. Multi-edges
(multiple edges from a vertex to the same destination) and loops (edge from a vertex to itself) are
allowed. This representation does not impose any ordering of vertices or edges. An example graph
is given in Figure 19.1 and its representative tables are given in Table 19.1.

19.2 Single Source Shortest Path
Given a graph and a source vertex, single source shortest path (SSSP) algorithm finds a path for
every vertex such that the sum of the weights of its constituent edges is minimized.

Shortest path is defined as follows. Let ei,j be the edge from vertex i to vertex j and wi,j be its
weight. Given a graph G, the shortest path from s to d is P = (v1, v2 . . . , vn) (where v1 = s and
vn = d) that over all possible n minimizes the sum

∑n−1
i=1 f(ei,i+1).

Bellman-Ford Algorithm [5, 30] is based on the following idea: We start with a naive approxi-
mation for the cost of reaching every vertex. At each iteration, these values are refined based on
the edge list and the existing approximations. If there are no refinements at any given step, the
algorithm returns the calculated results. If the algorithm does not converge in |V | − 1 iterations,
this indicates the existence of a negative cycle in the graph.
Algorithm SSSP(V,E, start)
Input: Vertex set V , edge set E, starting vertex start
Output: Distance and parent set for every vertex cur
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19.2 Single Source Shortest Path

v0
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Figure 19.1: A sample graph

vid
0
1
2
3
4
5
6
7

src dest weight
0 1 1
0 2 1
0 4 10
1 2 2
1 3 10
1 5 1
2 3 1
2 5 1
2 6 3
3 0 1
5 6 1
6 7 1

Table 19.1: Graph representation of vertices (left) and edges(right) in the database

1: toupdate(0)← (start, 0, start)
2: for every i ∈ 0 . . . |V | − 1 do
3: for every tuple t ∈ toupdate(i) do
4: for every edge e | e.src = t.id do
5: local← e.val + t.val
6: if local < toupdate(i+ 1, e.dest).val then
7: toupdate(i+ 1, dest)← (local, e.src)
8: for every tuple t ∈ toupdate(i+ 1) do
9: if t.val < cur(t.id).val then

10: cur(t.id)← (t.val, t.parent)

edge: (src, dest, val). The edges of the graph.

cur: id→ (val, parent). The intermediate SSSP results.
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toupdate: iter → (id→ (val, parent)). The set of updates.

Changes from the standard Bellman-Ford algorithm:

Line 3: We only check the vertices that have been updated in the last iteration.

Line 6: At each iteration, we update a given vertex only one time. This means the toupdate set
cannot contain multiple records for the same vertex which requires the comparison with the
existing value.

This is not a 1-to-1 pseudocode for the implementation since we don’t compare the ‘toupdate‘
table records one by one but calculate the overall minimum. In addition, the comparison with ‘cur‘
values take place earlier to reduce the number of tuples in the ‘toupdate‘ table.

19.2.1 Implementation Details

In this section, we discuss the MADlib implementation of the SSSP algorithm in depth.

Algorithm SSSP(V,E, start)
1: repeat
2: Find Updates
3: Apply updates to the output table
4: until There are no updates

The implementation consists of two SQL blocks that are called sequentially inside a loop. We
will follow the example graph at Figure 19.1 with the starting point as v0. The very first update
on the output table is the source vertex. Its weight is 0 and its parent is itself (v0). After this
initialization step, the loop starts with Find Updates (the individual updates will be represented
with <dest,value,parent> format). Looking at the example, it is clear that the updates should be
<1,1,0>, <2,1,0> and <4,10,0>. We will assume this iteration is already completed and look how
the next iteration of the algorithm works to explain the implementation details.

Algorithm Find Updates(E, old_update, out_table)
1: INSERT INTO new_update
2: SELECT DISTINCT ON (y.id) y.id AS id,
3: y.val AS val,
4: y.parent AS parent
5: FROM out_table INNER JOIN (
6: SELECT edge_table.dest AS id, x.val AS val, old_update.id AS parent
7: FROM old_update
8: INNER JOIN edge_table
9: ON (edge_table.src = old_update.id)
10: INNER JOIN (
11: SELECT edge_table.dest AS id,
12: min(old_update.val + edge_table.weight) AS val
13: FROM old_update INNER JOIN
14: edge_table AS edge_table ON
15: (edge_table.src=old_update.id)
16: GROUP BY edge_table.dest
17: ) x
18: ON (edge_table.dest = x.id)
19: WHERE ABS(old_update.val + edge_table.weight - x.val) < EPSILON
20: ) AS y ON (y.id = out_table.vertex_id)
21: WHERE y.val<out_table.weight
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The Find Updates query is constructed in 4 levels of subqueries: find values, find parents, elim-
inate duplicates and ensure improvement.

• We begin our analysis at the innermost subquery, emphfind values (lines 11-16). This sub-
query takes a set of vertices (in the table old_update) and finds the reachable vertices. In
case a vertex is reachable by multiple vertices, only the path that has the minimum cost is
considered (hence the name find values). There are two important points to note:
– The input vertices need the value of their path as well.
∗ In our example, both v1 and v2 can reach v3. We would have to use v2 → v3 edge
since that gives the lowest possible path value.

– The subquery is aggregating the rows using the min operator for each destination vertex
and unable to return the source vertex at the same time to use as the parent value.
∗ We know the value of v3 should be 2 but we cannot know its parent (v2) at the same
time.

• The find parents subquery is designed to solve the aforementioned limitation. We combine
the result of find values with edge and old_update tables (lines 7-10) and get the rows that
has the same minimum value.
– Note that, we would have to tackle the problem of tie-breaking.
∗ Vertex v5 has two paths leading into: <5,2,1> and <5,2,2>. The inner subquery
will return <5,2> and it will match both of these edges.

– It is redundant to keep both of them in the update list as that would require updating
the same vertex multiple times in a given iteration.

• At this level, we employ the eliminate duplicates subquery. By using the DISTINCT clause
at line 2, we allow the underlying system to accept only a single one of them.

• Finally, we introduce the ensure improvement subquery to make sure these updates are ac-
tually leading us to shortest paths. Line 21 ensures that the values stored in the out_table
does not increase and the solution does not regress throughout the iterations.

Applying updates is straightforward as the values and the associated parent values are replaced
using the new_update table. After this operation is completed the new_update table becomes
old_update for the next iteration of the algorithm.
Please note that, for ideal performance, vertex and edge tables should be distributed on vertex

id and source id respectively.

19.3 All Pairs Shortest Paths
Given a graph and a source vertex, all pairs shortest paths (APSP) algorithm finds a path for every
vertex pair such that the sum of the weights of its constituent edges is minimized. Please refer to
the Section 19.2 on single source shortest path for the mathematical definition of shortest path.
Our implementation has a dynamic programming approach, based on the matrix multiplication

inspired APSP algorithm [62]. The idea is similar to the one from SSSP implementation. We start
with a naive approximation for the cost of every vertex pair (infinite). At each iteration, these
values are refined based on the edge list and the existing approximations. This refinement step is
similar to a matrix multiplication. For every vertex pair i, j, we check every edge e : j → k to see
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if it is possible to use e to reduce the cost of path i→ k. If there are no refinements at any given
step, the algorithm returns the calculated results. If the algorithm does not converge in |V | − 1
iterations, this indicates the existence of a negative cycle in the graph.

Algorithm APSP(V,E)
Input: Vertex set v, edge set E
Output: Distance and parent set for every vertex pair
1: while update is True do
2: update← False
3: for every vertex pair i, j do
4: for every edge j → k do
5: if val(i→ j) + val(j → k) < val(i→ k) then
6: val(i→ k)← val(i→ j) + val(j → k)
7: parent(i→ k)← j
8: update← True

19.3.1 Implementation Details

The implementation details are similar to the SSSP as the requirements and restrictions such as
finding the parent, distinct updates, etc. are common in both cases. This section will mostly focus
on the differences in the APSP implementation.

Algorithm Find Updates(E, out)
1: INSERT INTO update
2: SELECT DISTINCT ON (y.src, y.dest) y.src AS src, y.dest AS dest
3: y.val AS val,
4: y.parent AS parent
5: FROM out INNER JOIN (
6: SELECT
7: x.src AS src, x.dest AS dest,
8: x.val AS val, out.dest AS parent
9: FROM out

10: INNER JOIN edge_table
11: ON (edge_table.src = out.dest)
12: INNER JOIN (
13: SELECT out.src AS src, edge_table.dest AS dest,
14: min(out.val + edge_table.weight) AS val
15: FROM out INNER JOIN
16: edge_table ON
17: (edge_table.src=out.dest)
18: GROUP BY out.src, edge_table.dest
19: ) x
20: ON (edge_table.src = x.src AND edge_table.dest = x.dest)
21: WHERE ABS(out.val + edge_table.weight - x.val) < EPSILON
22: ) AS y ON (y.src = out.src AND y.dest = out.dest)
23: WHERE y.val < out.val

The only major difference comes in the innermost subquery (lines 13-18). The group by clause
ensures that we try to reduce the weight for every out.src (i) and edge_table.dest (k) pair. The
inner join on clause ensures that there is a connecting edge (j → k) that can be used for the i, j
pair. The rest of the changes are mostly trivial as the algorithm needs to check for both source and
destination during joins (instead of just the destination).
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19.4 PageRank

Figure 19.2: An example graph for PageRank

PageRank is a link analysis algorithm that assigns a score to every vertex measuring the relative
importance of vertices within the set of all vertices. PageRank [16] was first used by Google to mea-
sure the importance of website pages where the World Wide Web was modeled as a directed graph.
Figure 19.2 shows an example graph with the PageRank value of each vertex. The intuition behind
the algorithm is that the number and quality of links to a vertex determine the authoritativeness
of the vertex, which is reflected in the PageRank scores as shown in the figure.
The pagerank module in MADlib implements the model of a random surfer who follows the edges

of a graph to traverse it, and jumps to a random vertex after several clicks. The random surfer is
modeled using a damping factor that represents the probability with which the surfer will continue
to follow links in the graph rather than jumping to a random vertex. MADlib’s pagerank module
outputs a probability distribution that represents the likelihood that the random surfer arrives at
a particular vertex in the graph.
PageRank is an iterative algorithm where the PageRank scores of vertices from the previous

iteration are used to compute the new PageRank scores. The PageRank score of a vertex v, at the
ith iteration, denoted by PR(vi) is computed as:

PR(vi) = 1− d
N

+ d
∑

u∈M(v)
(PR(ui−1)

L(u) ) (19.4.1)

where N is the number of vertices in the graph, d is the damping factor, M(v) represents the
set of vertices that have an edge to vertex v, L(u) represents the out-degree of vertex u, i.e., the
number of out-going edges from vertex u, and PR(ui−1) represents the PageRank score of vertex
u in the (i− 1)st iteration.

1−d
N represents the tiny probability with which the surfer would randomly jump to vertex v,

rather than arriving at v following links in the graph. This ensures that there is some probability
of visiting every vertex in the graph even if they do not have any incoming edges. Note that the
PageRank score computed for a vertex v using 19.4.1 in the ith iteration is not updated until the
new score is computed for all the vertices in the graph. The computation terminates either when
the PageRank score of no vertex changes beyond a threshold across two consecutive iterations, or
when a pre-set number of iterations are completed.
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Personalized Pagerank: The Personalized Pagerank variant of Pagerank module in MADlib
takes an extra argument as a set of user provided vertices. These personalization vertices will
have a higher jump probability as compared to other vertices and random surfer is more likely to
jump on these personalization vertices. These personalization vertices are initialized with an initial
probabilty of 1

N where N is the total number of personlaized vertices in the graph and rest of the
vertices in the graph are assigned an initial probability of 0. Pagerank calculated for these vertices
is biased as a random jump probability is assigned to only these vertices during the pagerank
calculation,which is equal to (1 - damping factor).

19.4.1 Implementation Details

In this section, we discuss the MADlib implementation of PageRank in depth. We maintain two
tables at every iteration: previous and cur. The previous table maintains the PageRank scores
of all vertices computed in the previous iteration, while cur maintains the updated scores of all
vertices in the current iteration.
Algorithm PageRank(V,E)
1: Create previous table with a default PageRank score of 1

N for every vertex
2: repeat
3: Create empty table cur.
4: Update cur using PageRank scores of vertices in previous
5: Update PageRank scores of vertices without incoming edges
6: Drop previous and rename cur to previous
7: until PageRank scores have converged or max iterations have elapsed

The implementation consists of updating the PageRank scores of all vertices at every iteration,
using the PageRank scores of vertices from the previous iteration. The PageRank score of every
vertex is initialized to 1

N where N is the total number of vertices in the graph. The out-degree of
every vertex in the graph (represented by L(u) in eq. 19.4.1), is captured in table out_cnts. The
following query is used to create and update the PageRank scores in cur table using the PageRank
scores in previous table.

Algorithm Update PageRank scores(previous, out_cnts, d,N)
1: CREATE TABLE cur AS
2: SELECT edge_table.dest AS id,
3: SUM(previous1.pagerank/out_cnts.cnt)*d + (1-d)/N AS pagerank
4: FROM edge_table
5: INNER JOIN previous ON edge_table.dest = previous.id
6: INNER JOIN out_cnts ON edge_table.src = out_cnts.id
7: INNER JOIN previous AS previous1 ON edge_table.src = previous1.id
8: GROUP BY edge_table.dest

10: -- Update PageRank scores of vertices without any incoming edges:
11: INSERT INTO cur
12: SELECT id, (1-d)/N AS pagerank
13: FROM previous
14: WHERE id NOT IN (
15: SELECT id
16: FROM cur
17: )
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The PageRank computation is terminated either when a fixed number of iterations are completed,
or when the PageRank scores of all vertices have converged. The PageRank score of a vertex is
deemed converged if the absolute difference in its PageRank scores from previous and cur is less
than a specified threshold. The following query is used to find all the vertices whose PageRank
scores have not converged yet.

Algorithm Update PageRank scores(previous, cur, threshold)
1: SELECT id
2: FROM cur
3: INNER JOIN previous ON cur.id = previous.id
4: WHERE ABS(previous.pagerank - cur.pagerank) > threshold

19.4.2 Best Practices

The pagerank module in MADlib has a few optional parameters: damping factor d, number of iter-
ations max, and the threshold for convergence threshold. The default values for these parameters
when not specified by the user are 0.85, 100 and 1

N∗1000 respectively.
The damping factor denotes the probability with which the surfer uses the edges to traverse the

graph. If set to 0, it implies that the only way a surfer would visit a vertex in the graph is by
randomly jumping to it. If set to 1, it implies that the only way the surfer can reach a vertex is
by following the edges in the graph, thus precluding the surfer from reaching a vertex that has
no incoming edges. It is common practice to set damping factor to 0.85 [16], and the maximum
number of iterations to 100. The convergence test for PageRank in MADlib checks for the delta
between the PageRank scores of a vertex across two consecutive iterations. Since the initial value of
the PageRank score is set to 1

N , the delta will be small in the initial iterations when N is large (say
over 100 million). We thus set the threshold to 1

N∗1000 , and it is to be noted that this is not based
on any experimental study. Users of MADlib are encouraged to consider this factor when setting
a value for threshold, since a high threshold value would lead to early termination of PageRank
computation, thus resulting in incorrect PageRank values.

19.5 Weakly Connected Components
Given a directed graph G, a weakly connected component is a subgraph Gsub of G, such that there
exists a path from every vertex in Gsub to every other vertex in Gsub, ignoring the direction of the
edges.
The weakly connected component module implemented in MADlib is based on GRAIL [27].

All vertices are initialized with their own vertex ID as the component ID, and are considered to
be active. In every iteration, each active vertex’s component ID is updated with the smallest
component ID value of all its neighbors. Any vertex whose component ID is not updated in the
current iteration is deemed as an inactive vertex for the next iteration. Execution continues until
there are no active vertices left. Since each vertex is initialized with its own ID as the component ID,
and updated based on neighboring nodes’ component IDs, the final component ID of a component
will be equal to the smallest vertex ID in the corresponding subgraph. Figure 19.3 shows an example
directed graph with two disconnected subgraphs. The subgraph containing vertices 1, 2, 3, 4, 5
and 6 forms a weakly connected component, and is assigned component ID 1, while the subgraph
containing vertices 12, 14, 21 and 23 forms the second component and is assigned component ID
12.
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19.5 Weakly Connected Components

Figure 19.3: An example disconnected directed graph

19.5.1 Implementation Details

In this section, we discuss the MADlib implementation of weakly connected components in depth.
We maintain the following tables at every iteration: oldupdate, message and newupdate. In
newupdate, the component ID of each vertex is initialized to infinity, while the component ID of
vertices in the message table is initialized to their corresponding vertex ID.

Algorithm Weakly Connected Components(V,E)
1: Create newupdate table with a default component ID of infinity for every vertex
2: Create message table with a default component ID of the corresponding id (vertex ID) for

every vertex
3: repeat
4: Update the oldupdate table
5: Update toupdate table with active vertices
6: Update the newupdate table
7: Update message table with potential new component IDs for each vertex
8: until There are no active vertices in toupdate table

The message table contains the component IDs associated with all its immediate neighbors. At
each iteration, oldupdate is updated with the minimum of all the associated component IDs found
for a vertex in message.

Algorithm Update oldupdate table
1: SELECT id, MIN(message.component_id) as component_id
2: FROM message
3: GROUP BY id

Table toupdate records all vertices whose component IDs must be updated, and are thus marked
active.
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Algorithm Update toupdate table with active vertices
1: -- Find vertices whose component ID must be updated
2: CREATE TABLE toupdate AS
3: SELECT id, component_id
4: FROM oldupdate, newupdate
5: WHERE oldupdate.id = newupdate.id AND
6: oldupdate.component_id < newupdate.component_id

8: -- Update the component IDs
9: UPDATE newupdate SET

10: component_id = toupdate.component_id
11: FROM toupdate
12: WHERE newupdate.id = toupdate.id

Finally, the message table is updated with potential new component IDs for active vertices using
the following query:

Algorithm Update message table(toupdate, edge)
1: CREATE TEMP TABLE message AS
2: SELECT id, MIN(component_id) AS component_id
3: FROM (
4: SELECT edge.src AS id,
5: toupdate.component_id
6: FROM toupdate, edge
7: WHERE edge.dest = toupdate.id
8: UNION ALL
9: SELECT edge.dest AS id,

10: toupdate.component_id
11: FROM toupdate, edge
12: WHERE edge.src = toupdate.id
13: ) AS t
14: GROUP BY id

At the end of the computation, newupdate will have the component ID associated with each
vertex in G. The component ID of all the vertices in a component is equal to the smallest vertex
ID in the corresponding subgraph.

19.5.2 Edge Table Duplication

The queries explained in the Section 19.5.1 expose a potential performance drawback in Greenplum
systems. In general, we advise that the edge tables should be distributed by their source columns.
However, in WCC, we use both source and destination columns of the edge table in JOIN clauses.
In addition, we employ a GROUP BY clause using the column that did not serve as the join
key. Algorithm Update message table shows that when dest is used for the JOIN clause, src is
renamed to id to be used for GROUP BY and vice versa. This query forces multiple redistribute
motions in the database which might cause performance degradation. To address this issue, we
create a duplicate of the edge table and distribute on the destination column (only for Greenplum
systems).

19.6 Breadth-first Search
Given a graph G and a user-specified origin vertex src, this algorithm searches and discovers
connected nodes in a graph in breadth-first order [12]. The graph can be treated as either directed
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or undirected based on a parameter specified when calling the function. There is also a parameter
to control the number of hops (edges) to traverse from the source vertex. If not specified, all nodes
accessible from the source node will be discovered.

19.6.1 Implementation Details
Algorithm Breadth First Search(V,E, src)
1: Set dist← 0
2: Create message table with src vertex, NULL parent, and dist
3: Copy message table to output table out
4: repeat
5: Create toupdate table using out and message tables
6: dist← dist+ 1
7: Update message table with newly found candidate vertices, parent and dist
8: Copy message table to out
9: until There are no candidate vertices remaining in message table

The implementation details are similar to SSSP, albeit simpler. We only have to track the number
of hops and not the sum of weights, but other requirements and restrictions such as finding the
parent, distinct updates, etc. are common in both cases. The output table is initialized only to
the src vertex to begin with. A message table is also maintained that contains the list of vertices
to traverse and explore in the next iteration, which is also initialized with the src vertex. BFS
then runs iteratively until no more candidate vertices remain in the message table, as outlined
in Breadth First Search.

At every iteration, toupdate table is updated with vertices that are neighbors of vertices in the
message table, that are not already visited in the past (one scan of the out table reveals all the
vertices that have already been visited in the past). All such newly found neighboring vertices in
the current iteration will have one or more parents, based on how many vertices in the message
table have a direct edge to them. Each such vertex in the message table is marked as the parent
of such newly found neighboring vertices in the toupdate table.
The message table is then cleared and updated with the contents of toupdate table, except that

for each new neighboring vertex considered, only one of the parents is recorded as its parent (the
node with the smallest id among all parent nodes). The content of this updated message is then
copied to the out table, and this process continues until message table is empty.

19.7 HITS
Hyperlink-Induced Topic Search (HITS) [45] developed by Jon Kleinberg is a link analysis algorithm
that rates Web pages. The idea behind the algorithm is to assign Hub and Authority scores to
all vertices. Authorities are analagous to web pages that have good authoritative content and get
linked by other web pages. Hubs can be thought of as large directories that themselves do not hold
any authoritative content but provide direct links to other authoritative pages.
HITS is an iterative algorithm where the Hub and Authority scores of vertices from the previous

iteration are used to compute the new scores. The Hub and Authority scores of a vertex v, at the
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Figure 19.4: An example graph for HITS showing normalized hub and authority scores

ith iteration, denoted by HUB(vi) and AUTHORITY (vi) is computed as:

AUTHORITY (vi) =
∑

u∈M(v)
(HUB(ui−1))

HUB(vi) =
∑

u∈M(v)
(AUTHORITY (vi))

(19.7.1)

where N is the number of vertices in the graph, M(v) represents the set of vertices that have an
edge to vertex v, and HUB(ui−1) and AUTHORITY (vi) represent the Hub score of vertex u in
the (i− 1)th iteration and Authority score of vertex v in the (i)th iteration.

19.7.1 Implementation Details

In this section, we discuss the MADlib implementation of HITS in depth. We maintain two tables
at every iteration: message and cur. The cur table maintains the Hub and Authority scores of
all vertices computed in the previous iteration, while message maintains the updated scores of all
vertices in the current iteration.
Algorithm HITS(V,E)
1: Create cur table with a default Hub and Authority score of 1 for every vertex
2: repeat
3: Create empty table message.
4: Update Authority score in message using Hub scores of vertices in cur
5: Update Hub score in message using Authority scores of vertices in message
6: Normalize Hub and Authority scores in message using L2 normalization
7: Rename message to cur
8: until both Authority and Hub scores have converged or max iterations have elapsed

The following query is used to create and update the Hub and Authority scores in message table
using the Hub scores in cur table.

Algorithm Update Hub and Authority scores(cur, edge_table)
1: -- Create message table and update authority scores
2: CREATE TABLE message AS
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3: SELECT cur.id AS id,
4: COALESCE(SUM(curalias.hub), 0.0) AS authority,
5: cur.hub AS hub
6: FROM cur
7: LEFT JOIN edge_table ON cur.id = edge_table.dest
8: LEFT JOIN cur AS curalias ON curalias.id = edge_table.dest
9: GROUP BY cur.id, cur.hub

10: ORDER BY cur.id

12: -- Update hub scores in message table:
13: UPDATE message
14: SET hub = subquery.hub FROM
15: (
16: SELECT message.id AS id, COALESCE(SUM(msgalias.authority), 0) AS hub
17: FROM message
18: LEFT JOIN edge_table ON message.id = edge_table.src
19: LEFT JOIN message AS msgalias ON message.id = edge_table.dest
20: GROUP BY message.id
21: ) AS subquery
22: WHERE subquery.id = message.id

The Hub and Authority computations are terminated either when a fixed number of iterations
are completed, or when both the Hub and Authority scores of all vertices have converged. The
Hub/Authority score of a vertex is deemed converged if the absolute difference in its Hub/Authority
scores from cur and message are less than a specified threshold. The following query is used to
find all the vertices whose Hub/Authority scores have not converged yet.

Algorithm Check for Hub and Authority convergence(cur,message, threshold)
1: SELECT DISTINCT cur.id FROM message
2: INNER JOIN cur ON cur.id=message.id
3: WHERE ABS(cur.authority-message.authority) > threshold
4: OR ABS(cur.hub-message.hub) > threshold

19.7.2 Best Practices

The HITS module in MADlib has a few optional parameters: number of iterations max, and the
threshold for convergence threshold. The default values for these parameters when not specified by
the user are 100 and 1

N∗1000 respectively. It is to be noted that this is not based on any experimental
study. Users of MADlib are encouraged to consider this factor when setting a value for threshold,
since a high threshold value would lead to early termination of computation, thus resulting in
incorrect Hub and Authority scores.
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20 Neural Network

Authors Xixuan Feng, Cooper Sloan, Rahul Iyer, Nikhil Kak

History v0.1 Initial version
v0.2 Added a section for momentum updates. Also updated the mlp-

train-iteration algorithm to include momentum calculations.

This module implements artificial neural network [75].

20.1 Multilayer Perceptron
Multilayer perceptron is arguably the most popular model among many neural network models [76].
Here, we learn the coefficients by minimizing a least square objective function, or cross entropy ([8],
example 1.5.3). The parallel architecture is based on the paper by Zhiheng Huang [78].

20.1.1 Solving as a Convex Program

Although the objective function is not necessarily convex, gradient descent or incremental gradient
descent are still commonly-used algorithms to learn the coefficients. To clarify, gradient-based
methods are not different from the famous backpropagation, which is essentially a way to compute
the gradient value.

20.1.2 Formal Description

Having the convex programming framework, the main tasks of implementing a learner include:
(a) choose a subset of algorithms; (b) implement the related computation logic for the objective
function, e.g., gradient.
For multilayer perceptron, we choose incremental gradient descent (IGD). In the remaining part

of this section, we will give a formal description of the derivation of objective function and its
gradient.

Objective function. We mostly follow the notations in example 1.5.3 from Bertsekas [8], for
a multilayer perceptron that has N layers (stages), and the kth stage has nk activation units
(φ : R→ R), the objective function for regression is given as

f(x,y)(u) = 1
2‖h(u, x)− y‖22,

and for classification the objective function is given as

f(x,y)(u) =
∑
i

(log(hi(u, x)) ∗ zi + (1− log(hi(u, x))) ∗ (1− zi),
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where x ∈ Rn0 is the input vector, y ∈ RnN is the output vector (one hot encoded for classification), 1
and the coefficients are given as

u = {usjk−1 | k = 1, ..., N, s = 0, ..., nk−1, j = 1, ..., nk},

And are initialized from a uniform distribution as follows:

usjk = uniform(−r, r),

where r is defined as follows:

r =
√

6
nk + nk+1

With regularization, an additional term enters the objective function, given as∑
usj
k

1
2λu

sj2
k

This still leaves h : Rn0 → RnN as an open item. Let ok ∈ Rnk , k = 1, ..., N be the output vector of
the kth layer. Then we define h(u, x) = oN , based on setting o0 = x and the jth component of ok
is given in an iterative fashion as 2

ojk = φ

(nk−1∑
s=0

osk−1u
sj
k−1

)
, k = 1, ..., N, j = 1, ..., nk

Gradient of the End Layer. Let’s first handle ustN−1, s = 0, ..., nN−1, t = 1, ..., nN . Let yt
denote the tth component of y ∈ RnN , and ht the tth component of output of h.

∂f

∂ustN−1
=
(
ht(u, x)− yt

)
· ∂h

t(u, x)
∂ustN−1

=
(
otN − yt

)
· ∂otN
∂ustN−1

=
(
otN − yt

)
·
∂φ
(∑nN−1

s=0 osN−1u
st
N−1

)
∂ustN−1

=
(
otN − yt

)
· φ′

(nN−1∑
s=0

osN−1u
st
N−1

)
· osN−1

To ease the notation, let the input vector of the jth activation unit of the (k + 1)th layer be

netjk =
nk−1∑
s=0

osk−1u
sj
k−1,

where k = 1, ..., N, j = 1, ..., nk, and note that ojk = φ(netjk). Finally, the gradient
∂f

∂ustN−1
=
(
otN − yt

)
· φ′(nettN ) · osN−1

For any s = 0, ..., nN−1, t = 1, ..., nN , we are given yt, and otN ,nettN , osN−1 can be computed by
forward iterating the network layer by layer (also called the feed-forward pass). Therefore, we now
know how to compute the coefficients for the end layer ustN−1, s = 0, ..., nN−1, t = 1, ..., nN .

1Of course, the objective function can be defined over a set of input-output vector pairs, which is simply given as
the addition of the above f .

2o0
k ≡ 1 is used to simplified the notations, and o0

k is not a component of ok, for any k = 0, ..., N .
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20.1.2.1 Backpropagation

For inner (hidden) layers, it is more difficult to compute the partial derivative over the input of
activation units (i.e., netk, k = 1, ..., N − 1). That said, ∂f

∂nettN
= (otN − yt)φ′(nettN ) is easy, where

t = 1, ..., nN , but ∂f

∂netj
k

is hard, where k = 1, ..., N − 1, j = 1, .., nk. This hard-to-compute statistic

is referred to as delta error, and let δjk = ∂f

∂netj
k

, where k = 1, ..., N − 1, j = 1, .., nk. If this is solved,
the gradient can be easily computed as follow

∂f

∂usjk−1
= ∂f

∂netjk
·
∂netjk
∂usjk−1

= δjk o
s
k−1,

where k = 1, ..., N − 1, s = 0, ..., nk−1, j = 1, .., nk. To solve this, we introduce the popular
backpropagation below.

Error Back Propagation. Since we know how to compute δtN , t = 1, ..., nN , we try to compute
δjk, j = 1, ..., nk, given δtk+1, t = 1, ..., nk+1, for any k = 1, ..., N − 1. First,

δjk = ∂f

∂netjk
= ∂f

∂ojk
·
∂ojk
∂netjk

= ∂f

∂ojk
· φ′(netjk)

∂f

∂ojk
=

nk+1∑
t=1

(
∂f

∂nettk+1
·
∂nettk+1

∂ojk

)
, k = 1, ..., N − 1, j = 1, ..., nk

Using the above equation, we can solve delta error backward iteratively

δjk = ∂f

∂ojk
· φ′(netjk)

=
nk+1∑
t=1

(
∂f

∂nettk+1
·
∂nettk+1

∂ojk

)
· φ′(netjk)

=
nk+1∑
t=1

(
δtk+1 ·

∂
(∑nk

s=0 o
s
ku

st
k

)
∂ojk

)
· φ′(netjk)

=
nk+1∑
t=1

(
δtk+1 · u

jt
k

)
· φ′(netjk)

To sum up, we need the following equation for error back propagation

δjk =
nk+1∑
t=1

(
δtk+1 · u

jt
k

)
· φ′(netjk)

where k = 1, ..., N − 1, and j = 1, ..., nk.

Momentum updates. Momentum[42][23] can help accelerate learning and avoid local minima
when using gradient descent. We also support nesterov’s accelarated gradient due to its look ahead
characteristics.
Here we need to introduce two new variables namely velocity and momentum. momentum must be
in the range 0 to 1, where 0 means no momentum. The velocity is the same size as the coefficient
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20.1 Multilayer Perceptron

and is accumulated in the direction of persistent reduction, which speeds up the optimization. The
momentum value is responsible for damping the velocity and is analogous to the coefficient of fric-
tion.
In classical momentum we first correct the velocity, and then update the model with that velocity,
whereas in Nesterov momentum, we first move the model in the direction of momentum*velocity,
then correct the velocity and finally use the updated model to calculate the gradient. The main
difference being that in classical momentum, we compute the gradient before updating the model
whereas in nesterov we first update the model and then compute the gradient from the updated
position.

Classic momentum update

v = µ ∗ v − η ∗ ∂f

∂usjk−1
(velocity update),

u = u + v

Nesterov momentum update

ua = u + µ ∗ v (nesterov’s initial coefficient update to the model),

v = µ ∗ v − η ∗ ∂f

∂uasjk−1
(velocity update, use the lookahead model ua for gradient calculations),

u = u − η ∗ ∂f

∂uasjk−1

where u is the coefficient vector, v is the velocity vector, µ is the momentum value, η is the learning
rate and ∂f

∂uasj
k−1

is the gradient calculated at the updated position ua

20.1.2.2 The Gradient Function
Algorithm mlp-gradient(u, x, y)
Input: Coefficients u = {usjk−1 | k = 1, ..., N, s = 0, ..., nk−1, j = 1, ..., nk},

start vector x ∈ Rn0 ,
end vector y ∈ RnN ,
activation unit φ : R→ R

Output: Gradient value ∇f(u) that consists of components ∇f(u)sjk−1 = ∂f

∂usj
k−1

1: (net, o)← feed-forward(u, x, φ)
2: δN ← end-layer-delta-error(net, o, y, φ′)
3: δ ← back-propogate(net, o, y, u, φ′)
4: for k = 1, ..., N do
5: for s = 0, ..., nk−1 do
6: for j = 1, ..., nk do
7: ∇f(u)sjk−1 ← δjko

s
k−1 . Can be put together with the computation of delta δ

8: return ∇f(u)

161



20.1 Multilayer Perceptron

Activation Units φ. Common examples of activation units are

φ(ξ) = 1
1 + e−ξ

, (logistic function),

φ(ξ) = eξ − e−ξ

eξ + e−ξ
, (hyperbolic tangent function)

φ(ξ) = max(x, 0), (rectified linear function)

Algorithm feed-forward(u, x, φ)
Input: Coefficients u = {usjk−1 | k = 1, ..., N, s = 0, ..., nk−1, j = 1, ..., nk},

input vector x ∈ Rn0 ,
activation unit φ : R→ R

Output: Input vectors net = {netjk | k = 1, ..., N, j = 1, ..., nk},
output vectors o = {ojk | k = 0, ..., N, j = 0, ..., nk}

1: for k = 0, ..., N do
2: o0

k ← 1
3: o0 ← x . For all components oj0, xj , j = 1, ..., n0
4: for k = 1, ..., N do
5: for j = 1, ..., nk do
6: netjk ← 0
7: for s = 0, ..., nk−1 do
8: netjk ← netjk + osk−1u

sj
k−1

9: ojk = φ(netjk) . Where the activation function for the final layer is identity for
regression and softmax for classification.

10: return (net, o)

Algorithm back-propogate(δN ,net, u, φ′)
Input: input vectors net = {netjk | k = 1, ..., N, j = 1, ..., nk},

output vectors o = {ojk | k = 0, ..., N, j = 0, ..., nk},
end vector y ∈ RnN ,
coefficients u = {usjk−1 | k = 1, ..., N, s = 0, ..., nk−1, j = 1, ..., nk},
derivative of activation unit φ′ : R→ R

Output: Delta δ = {δjk | k = 1, ..., N, j = 1, ..., nk}
1: for t = 1, ..., nN do
2: δtN ← (otN − yt) . This applies for identity activation and mean square error loss and

softmax activation with cross entropy loss
3: for k = N − 1, ..., 1 do
4: for j = 0, ..., nk do
5: δjk ← 0
6: for t = 1, ..., nk+1 do
7: δjk ← δjk + δtk+1u

jt
k

8: δjk ← δjkφ
′(netjk)

9: return δ
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Algorithm mlp-train-iteration(X,Y, η, µ, n)
Input: start vectors Xi...m ∈ Rn0 ,

end vectors Yi...m ∈ RnN ,
learning rate η,
momentum µ,
nesterov flag n

Output: Coefficients u = {usjk−1 | k = 1, ..., N, s = 0, ..., nk−1, j = 1, ..., nk}
1: Randomnly initialize u
2: Initialize velocity v to 0
3: for i = 1, ...,m do
4: if n == True then
5: u← u+ µ ∗ v (nesterov’s initial coefficient update)
6: ∇f(u)← mlp-gradient(u,Xi, Yi)
7: v ← µ ∗ v − (η∇f(u)u+ λu) . (nesterov’s initial coefficient update)
8: if µ == 0 and n == False then
9: u← u+ v . (classic(non-nesterov) momentum update)

10: else
11: u← u− (η∇f(u)u+ λu)
12: return u

Algorithm mlp-train-parallel(X,Y, η, s, t)
Input: start vectors Xi...m ∈ Rn0 ,

end vectors Yi...m ∈ RnN ,
learning rate η,
segments s,
iterations t,

Output: Coefficients u = {usjk−1 | k = 1, ..., N, s = 0, ..., nk−1, j = 1, ..., nk}
1: Randomnly initialize u
2: for j = 1, ..., s do
3: Xj ← subset-of-X
4: Yj ← subset-of-Y

5: for i = 1, ..., t do
6: for j = 1, ..., s do
7: uj ← copy(u)
8: uj ← mlp-train-iteration(Xj , Yj , η)
9: u← weighted-avg(u1...s)

10: return u

!TEX root = ../design.tex
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21 k Nearest Neighbors

Authors Orhan Kislal

History v0.1 Initial version: knn and kd-tree.

21.1 Introduction
Some notes and figures in this section are borrowed from [1] and [41].
K-nearest neighbors (KNN) is one of the most commonly used learning algorithms. The goal of

knn is to find a number (k) of training data points closest to the test point. These neighbors can
be used to predict labels via classification or regression.
KNN does not have a training phase like the most of learning techniques. It does not create a

model to generalize the data, instead the algorithm uses the whole training dataset (or a specific
subset of it).
KNN can be used for classification, the output is a class membership (a discrete value). An

object is classified by a majority vote of its neighbors, with the object being assigned to the class
most common among its k nearest neighbors. It can also be used for regression, output is the value
for the object (predicts continuous values). This value is the average (or median) of the values of
its k nearest neighbors.

21.2 Implementation Details
The basic KNN implementation depends on the table join between the training dataset and the
test dataset.

1: (SELECT test_id,
2: train_id,
3: fn_dist(train_col_name, test_col_name) AS dist,
4: label
5: FROM train_table, test_table) AS knn_sub

Once we have the distance between every train - test pair, the algorithm picks the k smallest
values.

1: SELECT row_number() OVER
2: (PARTITION BY test_id ORDER BY dist) AS r,
3: test_id,
4: train_id,
5: label
6: FROM knn_sub
7: WHERE r <= k

Finally, the prediction is completed based on the labels of the selected training points for each
test point.
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21.3 Enabling KD-tree

21.3 Enabling KD-tree
One of the major shortcomings of KNN is the fact that it is computationally expensive. In addition,
there is no training phase; which means every single prediction will have to compute the full table
join. One of the ways to improve the performance is to reduce the search space for test points.
Kd-tree option is developed to enable trading the accuracy of the output with higher performance
by reducing the neighbor search space.
Kd-trees are used for organizing data in k dimensions. It is constructed like a binary search tree

where each level of the tree is using a specific dimension for finding splits.

Figure 21.1: A 2D kd-tree of depth 3

A kd-tree is constructed by finding the median value of the data in a particular dimension and
separating the data into two sections based on this value. This process is repeated a number of
times to construct smaller regions. Once the kd-tree is prepared, it can be used by any test point to
find its assigned region and this fragmentation can be used for limiting the search space for nearest
neighbors.
Once we have the kd-tree regions and their borders, we find the associated regions for the test

points. This gives us the first region to search for nearest neighbors. In addition, we allow the user
to request for multiple regions to search. This means we have to decide which additional regions
to include in our search. We implemented a backtracking algorithm to find these regions. The core
idea is to find the closest border for each test point and select the region on the other side of the
border. Note that points that reside in the same region might have different secondary (or tertiary,
etc.) regions. Consider the tree at Figure 21.1. A test point at < 5, 2 > is in the same region as
< 3, 3.9 >. However, their closest borders and the associated secondary regions are wildly different.
In addition, consider < 3, 3.9 > and < 6, 3.9 >. They both have the same border as their closest
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one (y = 4). However, their closest regions do differ. To make sure that we get the correct region,
the following scheme is implemented. For a given point P , we find the closest border, dim[i] = x
and P ’s relative position to it (pos = −1 for lower and +1 for higher). We conjure a new point
that consists of the same values as the test point in every dimension except i. For dim[i], we set
the value to x−pos∗ ε. Finally, we use the existing kd-tree to find this new point’s assigned region.
This region is our expansion target for the point P . We repeat this process with the next closest
border as requested by the user.
The knn algorithm does not change significantly with the addition of regions. Assuming that

the training and test datasets have their region information stored in the tables, the only necessary
change is ensuring that the table join uses these region ids to limit the search space.

1: (SELECT test_id,
2: train_id,
3: fn_dist(train_col_name, test_col_name) AS dist,
4: label
5: FROM train_table, test_table
6: WHERE train_table.region_id = test_table.region_id
7: ) AS knn_sub
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